
LOW & MEDIUM PRESSURE FILTERS

A WORLDWIDE LEADER IN THE FIELD OF HYDRAULIC FILTRATION EQUIPMENT.

Our company started life in 1964, when Bruno Pasotto decided to attempt to cater for the requests of a market still to be fully explored, with the study, design, development, production and marketing of a vast range of filters for hydraulic equipment, capable of satisfying the needs of manufacturers in all sectors. The quality of our products, our extreme competitiveness compared with major international producers and our constant activities of research, design and development has made us a worldwide leader in the field of hydraulic circuit filtering. Present for over 50 years in the market, we have played a truly decisive role in defining our sector, and by now we are a group capable of controlling our entire chain of production, monitoring all manufacturing processes to guarantee superior quality standards and to provide concrete solutions for the rapidly evolving needs of customers and the market.

HYDRAULIC FILTRATION PRODUCTS

	hage INTRODUCTION
2	INDEX
4	COMPANY PROFILE
8	PRODUCT RANGE
11	CONTAMINATION MANAGEMENT
22	FILTER SIZING
24	CORRECTIVE FACTOR
26	SELECTION SOFTWARE

			up to	Qmax
28 6	bage	SUCTION FILTERS	l/min	gpm
31	STR & MPA - MPM	Submerged suction filter, with bypass or magnetic filter	1000	264
38	SFEX	In-line filter with plastic bowl	100	26
49	SF2 250 - 350	Semi-submerged positive head suction filter, low flow rate	160	42
57	SF2 500	Semi-submerged positive head suction filter, high flow rate	700	185
679	CLOGGING INDICATORS			

_			up to	P _{max}	up to	Q _{max}
(66) F	age	RETURN FILTERS	bar	psi	l/min	gpm
68	RFEX	Return filter, tank mounted filter suitable for all mineral oil and water glycol applications	16	232	260	69
78	MPFX	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
106	MPLX	Tank top semi-immersed filter, standard filter element disassembly	10	145	1800	476
114	MPTX	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
132	MFBX	Bowl assembly	8	116	700	185
141	MPF	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
169	MPT	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
187	MFB	Bowl assembly	8	116	700	185
195	MDH	Heavy industrial applications integrated in the tank - air separation	10	145	500	132
203	MPH	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
227	MPI	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
239	FRI	Tank top semi-immersed filter, easy filter element disassembly, it can be used also as in-line filter	20	290	2500	660
255	RF2	Semi-immersed under-head filter, easy filter element disassembly	20	290	615	162
262	ACCESSORIES				-	

680 CLOGGING INDICATORS

			up to	P _{max}	up to	Q _{max}
264 F	bage	RETURN / SUCTION FILTERS	bar	psi	l/min	gpm
266	MRSX	Unique TANK TOP filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	10	145	250	66
279	LMP 124 MULTIPORT	Unique IN-LINE filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	80	1160	120	32
682	CLOGGING INDICATORS			,		

			up to	P _{max}	up to	Q _{max}
(288) F	bage	SPIN-ON FILTERS	bar	psi	l/min	gpm
291	MPS	Low pressure filter, available with single cartridge (CS) for in-line or flange mounting or with two cartridge on the same axis on the opposite sides	12	174	365	96
684	CLOGGING INDICATORS					

INDEX

			up to	P _{max}	up to	Q _{max}
(306 p	age	LOW & MEDIUM PRESSURE FILTERS	bar	psi	l/min	gpm
308	LFEX	In-line filter with plastic bowl	16	232	300	79
319	LMP 110 - 120 - 123 MULTIPORT	In-line filter with Multiport design for multiple choice connection	80	1160	175	46
335	LMP 210 - 211	In-line low & medium pressure filter, low flow rate	60	870	365	96
345	LMP 400 - 401 & 430 - 431	In-line low & medium pressure filter, high flow rate	60	870	780	206
357	LMP 950 - 951	In-line filter, available with 2 and up to 6 different heads	30	435	2400	634
365	LMP 952 - 953 - 954	In-line low pressure filter specifically designed to be mounted in series	25	363	4500	1189
377	LMD 211	In-line duplex medium pressure filter	60	870	200	53
385	LMD 400 - 401 & 431	In-line duplex low pressure filter	16	232	600	159
401	LMD 951	In-line duplex filter, available with 2 up to 6 different heads	16	232	1200	317
409		Filter elements designed according to DIN 24550				
411	LDP - LDD	In-line and duplex medium pressure filter	60	870	360	95
421	LMP 900 - 901	In-line low pressure filter	30	435	2000	528
429	LMP 902 - 903	In-line filter specifically designed to be mounted in series	20	290	3000	793
438	ACCESSORIES					

686 CLOGGING INDICATORS

			up to	P _{max}	up to	Q _{max}
(440 p	bage	HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
442	FMMX 050	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
451	FMM	Typical high pressure filter for mobile applications, low flow rate	420	6092	300	79
461	FHA 051	Filter optimized for use in high pressure operating systems, low flow rate	560	8122	150	40
469	FMP 039	Filter high pressure, low flow rate applications	110	1595	80	21
477	FMP	Filter high pressure, high flow rate applications	320	4641	500	132
489	FHP	Typical high pressure filter for mobile applications, high flow rate	450	6527	630	166
509	FHM	High pressure filter with intermediate manifold construction	320	4641	400	106
527	FHB	High pressure for block mounting	320	4641	485	128
541	FHF 325	In-line manifold top mounting	350	5076	550	145
551	FHD	In-line duplex high pressure filter	350	5076	250	66
565	HPB	Pressure filter kits for integration in control manifolds	420	6092	300	79
687	CLOGGING INDICATORS					

_			up to	D P _{max}	up to	Q _{max}
(574) p	age	STAINLESS STEEL HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
577	FZP	In-line pressure filter with threaded mount	420	6092	160	42
587	FZH	In-line pressure filter with threaded mount for higher pressure	700	10153	80	21
597	FZX	In-line pressure filter with threaded mount up to 1000 bar	1000	14504	10	3
605	FZM	Manifold top mounting	320	4641	70	18
613	FZB	Manifold side mounting	320	4641	70	18
621	FZD	Duplex pressure filter for continuous operation requirements	350	5076	60	16
688	CLOGGING INDICATORS					

			up to	P _{max}	up to	Q max
632 F	age	FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	bar	psi	l/min	gpm
634	FMMX 050	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
643	FZP	In-line pressure filter with threaded mount	700	10153	80	21
653	FZH	In-line pressure filter with threaded mount for higher pressure	1000	14504	10	3
663	FZX	In-line pressure filter with threaded mount up to 1000 bar	320	4641	70	18
689	CLOGGING INDICATORS					

669 page

CLOGGING INDICATORS

674 QUICK REFERENCE GUIDE

679 DESIGNATION AND ORDERING CODES

690 TECHNICAL DATA

MARKET **LEADER**

Our work is based on a skillful interaction between advanced technology and fine workmanship, **customizing products according to specific market requests**, focusing strongly on innovation and quality, and following every step in the manufacturing of both standard and special products, fully respecting customer expectations.

Our customer-oriented philosophy, which enables us to satisfy all customer requests **rapidly** and **with personalized products**, makes us a **dynamic and flexible enterprise**. The possibility of constantly controlling and monitoring the entire production process is essential to allow us to guarantee the quality of our products.

WORLDWIDE PRESENCE

Our foreign Branches enable us to offer a diversified range of products that allow us to successfully face the aggressive challenge of international competition, and also to maintain a stable presence at a local level.

The Group boasts **9** business branches

TECHNOLOGY

Our constant **quest for excellence in quality and technological innovation** allows us to offer only the best solutions and services for applications in many fields, including general industry, test rigs, lubrication, heavy engineering, renewable energies, naval engineering, offshore engineering, aviation systems, emerging technologies and mobile plant (i.e. tractors, excavators, concrete pumps, platforms).

AND PRODUCTION

Our high level of technological expertise means we can rely entirely on our own resources, without resorting to external providers. This in turn enables us to satisfy a growing number of customer requests, also exploiting our constantly updated range of machines and equipment, featuring fully-automated workstations capable of 24-hour production.

MPFILTRI —

Flow rates up to 875 l/min

Mounting:

- Tank immersed
- In-Line
- In tank with
- shut off valve
- In tank
- with flooded suction

RETURN **FILTERS**

Flow rates up to 3000 l/min

Pressure up to 20 bar

Mounting: - In-Line - Tank top - In single

and duplex designs

RETURN / SUCTION **FILTERS**

Flow rates up to 300 l/min

Pressure up to 80 bar

Mounting: - In-Line - Tank top

SPIN-ON **FILTERS**

Flow rates up to 365 l/min

Pressure up to 35 bar

Mounting: - In-Line - Tank top

Flow rates

Pressure up to 80 bar

Mounting:

- In-Line
- Parallel manifold version
- In single

LOW & MEDIUM PRESSURE **FILTERS**

up to 3000 l/min

- and duplex designs

PRESSURE FILTERS

Flow rates up to 750 l/min

Pressure from 110 bar up to 560 bar

- Mounting:
- In-Line
- Manifold
- In single

and duplex designs

Introduction

PRODUCT RANGE

MP Filtri can offer a vast and articulated range of products for the global market, suitable for all industrial sectors using hydraulic equipment.

This includes filters (suction, return, return/suction, spin-on, pressure, stainless steel pressure, ATEX filters) and structural components (motor/pump bell-housings, transmission couplings, damping rings, foot brackets, aluminium tanks, cleaning covers).

We can provide all the skills and solutions required by the modern hydraulics industry to monitor contamination levels and other fluid conditions.

Mobile filtration units and a full range of accessories allow us to supply everything necessary for a complete service in the hydraulic circuits.

STAINLESS STEEL HIGH PRESSURE FILTERS

Flow rates up to 150 l/min

Pressure from 320 bar up to 1000 bar

Mounting:

- In-Line
- Manifold
- In single

and duplex designs

FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE

Flow rates up to 154 l/min

Pressure from 420 bar up to 1000 bar

Mounting: - In-Line

CONTAMINATION CONTROL SOLUTIONS

Off-line, in-line particle counters Off-line bottle sampling products

- Fully calibrated using relevant ISO standards
- A wide range of variants to support fluid types and communication protocols
 Mobile Filtration Units with flow rates from 15 l/min up to 200 l/min

POWER TRANSMISSION PRODUCTS

 Aluminium bell-housings for motors

- from 0.12 kW to 400 kW
- Couplings in Aluminium
- Cast Iron Steel
- Damping rings
- Foot bracket
- Aluminium tanks
- Cleaning covers

TANK ACCESSORIES

- Oil filler and

- air breather plugs
- Optical and electrical level gauges
- Pressure gauge valve
- selectors
- Pipe fixing brackets
- Pressure gauges

Introduction

CONTAMINATION MANAGEMENT

INDEX

		Page
1	HYDRAULIC FLUIDS	12
2	FLUIDS CONTAMINATION	12
3	EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS	12
4	MEASURING THE SOLID CONTAMINATION LEVEL	13
5	FILTRATION TECHNOLOGIES	16
6	RECOMMENDED CONTAMINATION CLASSES	17
7	TYPES OF FILTERS	17
8	FILTER SIZING PARAMETERS	18
9	APPLICABLE STANDARDS FOR FILTER DEVELOPMENT	18
10	WATER IN HYDRAULIC AND LUBRICATING FLUIDS	19
(11)		20

1 HYDRAULIC FLUIDS

The fluid is the vector that transmits power, energy within an oleodynamic circuit. In addition to transmitting energy through the circuit, it also performs additional functions such as lubrication, protection and cooling of the surfaces. The classification of fluids used in hydraulic systems is coded in many regulatory references, different Standards.

The most popular classification criterion divides them into the following families: - MINERAL OILS

Commonly used oil deriving fluids.

- FIRE RESISTANT FLUIDS Fluids with intrinsic characteristics of incombustibility or high flash point.
- SYNTHETIC FLUIDS Modified chemical products to obtain specific optimized features.
- ECOLOGICAL FLUIDS

Synthetic or vegetable origin fluids with high biodegradability characteristics.

The choice of fluid for an hydraulic system must take into account several parameters.

These parameters can adversely affect the performance of an hydraulic system, causing delay in the controls, pump cavitation, excessive absorption, excessive temperature rise, efficiency reduction, increased drainage, wear, jam/block or air intake in the plant.

The main properties that characterize hydraulic fluids and affect their choice are:

- DYNAMIC VISCOSITY
- It identifies the fluid's resistance to sliding due to the impact of the particles forming it.
- KINEMATIC VISCOSITY

It is a widespread formal dimension in the hydraulic field.

It is calculated with the ratio between the dynamic viscosity and the fluid density.

Kinematic viscosity varies with temperature and pressure variations.

- VISCOSITY INDEX

This value expresses the ability of a fluid to maintain viscosity when the temperature changes.

A high viscosity index indicates the fluid's ability to limit viscosity variations by varying the temperature.

- FILTERABILITY INDEX

It is the value that indicates the ability of a fluid to cross the filter materials. A low filterability index could cause premature clogging of the filter material.

- WORKING TEMPERATURE

Working temperature affects the fundamental characteristics of the fluid. As already seen, some fluid characteristics, such as cinematic viscosity, vary with the temperature variation.

When choosing a hydraulic oil, must therefore be taken into account of the environmental conditions in which the machine will operate.

- COMPRESSIBILITY MODULE

Every fluid subjected to a pressure contracts, increasing its density. The compressibility module identifies the increase in pressure required to cause a corresponding increase in density.

- HYDROLYTIC STABILITY

It is the characteristic that prevents galvanic pairs that can cause wear in the plant/system.

(12)

- ANTIOXIDANT STABILITY AND WEAR PROTECTION These features translate into the capacity of a hydraulic oil to avoid corrosion
- These features translate into the capacity of a hydraulic oil to avoid corrosion of metal elements inside the system.
- HEAT TRANSFER CAPACITY

It is the characteristic that indicates the capacity of hydraulic oil to exchange heat with the surfaces and then cool them.

2 FLUID CONTAMINATION

Whatever the nature and properties of fluids, they are inevitably subject to contamination. Fluid contamination can have two origins:

- INITIAL CONTAMINATION Caused by the introduction of contaminated fluid into the circuit, or by incorrect storage, transport or transfer operations.
- PROGRESSIVE CONTAMINATION

Caused by factors related to the operation of the system, such as metal surface wear, sealing wear, oxidation or degradation of the fluid, the introduction of contaminants during maintenance, corrosion due to chemical or electrochemical action between fluid and components, cavitation. The contamination of hydraulic systems can be of different nature:

- SOLID CONTAMINATION
- For example rust, slag, metal particles, fibers, rubber particles, paint particles
- or additives
- LIQUID CONTAMINATION

For example, the presence of water due to condensation or external infiltration or acids

- GASEOUS CONTAMINATION

For example, the presence of air due to inadequate oil level in the tank, drainage in suction ducts, incorrect sizing of tubes or tanks.

3 EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS

Solid contamination is recognized as the main cause of malfunction, failure and early degradation in hydraulic systems. It is impossible to delete it completely, but it can be effectively controlled by appropriate devices.

CONTAMINATION IN PRESENCE OF LARGE TOLERANCES

CONTAMINATION IN PRESENCE OF NARROW TOLERANCES

Solid contamination mainly causes surface damage and component wear.

- ABRASION OF SURFACES

Cause of leakage through mechanical seals, reduction of system performance, failures.

- SURFACE EROSION

Cause of leakage through mechanical seals, reduction of system performance, variation in adjustment of control components, failures.

- ADHESION OF MOVING PARTS Cause of failure due to lack of lubrication.
- DAMAGES DUE TO FATIGUE Cause of breakdowns and components breakdown.

Liquid contamination mainly results in decay of lubrication performance and protection of fluid surfaces.

DISSOLVED WATER

- INCREASING FLUID ACIDITY Cause of surface corrosion and premature fluid oxidation
- GALVANIC COUPLE AT HIGH TEMPERATURES Cause of corrosion

FREE WATER - ADDITIONAL EFFECTS

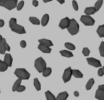
- DECAY OF LUBRICANT PERFORMANCE Cause of rust and sludge formation, metal corrosion and increased solid contamination
- BATTERY COLONY CREATION Cause of worsening in the filterability feature
- ICE CREATION AT LOW TEMPERATURES Cause damage to the surface
- ADDITIVE DEPLETION Free water retains polar additives

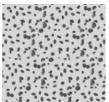
Gaseous contamination mainly results in decay of system performance.

- CUSHION SUSPENSION Cause of increased noise and cavitation.
- FLUID OXIDATION Cause of corrosion acceleration of metal parts.

- MODIFICATION OF FLUID PROPERTIES (COMPRESSIBILITY MODULE, DENSITY, VISCOSITY)
 Cause of system's reduction of efficiency and of control.
 It is easy to understand how a system without proper contamination management is subject to higher costs than a system that is provided.
- MAINTENANCE Increase maintenance activities, spare parts, machine stop costs.
- ENERGY AND EFFICIENCY Efficiency and performance reduction due to friction, drainage, cavitation.

(4) MEASURING THE SOLID CONTAMINATION LEVEL


The level of contamination of a system identifies the amount of contaminant contained in a fluid.


This parameter refers to a unit volume of fluid.

The level of contamination may be different at different points in the system. From the information in the previous paragraphs it is also apparent that the level of contamination is heavily influenced by the working conditions of the system, by its working years and by the environmental conditions.

What is the size of the contaminating particles that we must handle in our hydraulic circuit?

Human Hair (75 µm)

MINIMUM DIMENSION VISIBLE WITH HUMAN EYES (40 µm)

Contamination level analysis is significant only if performed with a uniform and repeatable method, conducted with standard test methods and suitably calibrated equipment.

To this end, ISO has issued a set of standards that allow tests to be conducted and express the measured values in the following ways.

- GRAVIMETRIC LEVEL - ISO 4405

The level of contamination is defined by checking the weight of particles collected by a laboratory membrane. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard.

The volume of fluid is filtered through the membrane by using a suitable suction system. The weight of the contaminant is determined by checking the weight of the membrane before and after the fluid filtration.

MEMBRANE

Contaminated Membrane

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4406

The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. Measurement is performed by Automatic Particle Analisers (APCs).

Following the count, the contamination classes are determined, corresponding to the number of particles detected in the unit of fluid.

The most common classification methods follow ISO 4406 and SAE AS 4059 (Aerospace Sector) regulations. NAS 1638 is still used although obsolete.

Classification example according to ISO 4406

The International Standards Organization standard ISO 4406 is the preferred method of quoting the number of solid contaminant particles in a sample. The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. The measurement is performed by Automatic Particle Analisers (APCs) or Particle Contamination Monitors (PCMs).

The numbers represent a code which identifies the number of particles of certain sizes in 1ml of fluid. Each code number has a particular size range. The first scale number represents the number of particles equal to or larger than 4 $\mu m_{(c)}$ per millilitre of fluid;

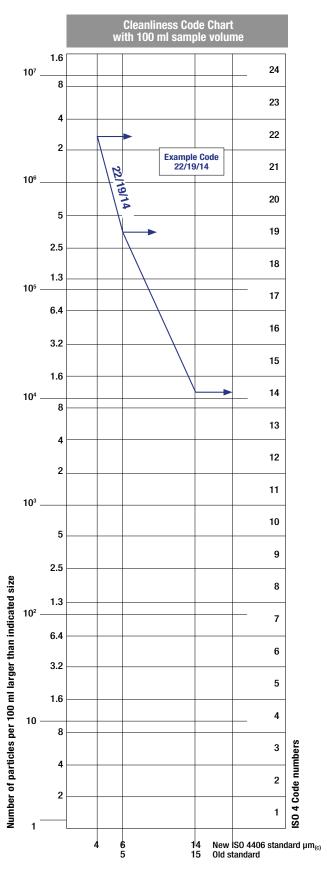
The second scale number represents the number of particles equal to or larger than 6 μ m_(c) per millilitre of fluid;

The third scale number represents the number of particles equal to or larger than 14 $\mu m_{(\!C\!)}$ per millilitre of fluid.

|--|

()) MPFILTRI

Class	Number of pa	articles per ml
	Over	Up to
28	1 300 000	2 500 000
27	640 000	1 300 000
26	320 000	640 000
25	160 000	320 000
24	80 000	160 000
23	40 000	80 000
22	20 000	40 000
21	10 000	20 000
20	5 000	10 000
19	2 500	5 000
18	1 300	2 500
17	640	1 300
16	320	640
15	160	320
14	80	160
13	40	80
12	20	40
11	10	20
10	5	10
9	2.5	5
8	1.3	2.5
7	0.64	1.3
6	0.32	0.64
5	0.16	0.32
4	0.08	0.16
3	0.04	0.08
2	0.02	0.04
1	0.01	0.02
0	0	0.01
> $4 \mu m_{(c)} = 350$ particles > $6 \mu m_{(c)} = 100$ particles		


> $6 \mu m_{(c)} = 100$ particles > $14 \mu m_{(c)} = 25$ particles

16/14/12

ISO 4406 Cleanliness Code System

Microscope counting examines the particles differently to APCs and the code is given with two scale numbers only.

These are at 5 μm and 15 μm equivalent to the 6 $\mu m_{(c)}$ and 14 $\mu m_{(c)}$ of APCs.

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE SAE AS4059-1 and SAE AS4059-2

Classification example according to SAE AS4059 - Rev. G

The code, prepared for the aerospace industry, is based on the size, quantity, and particle spacing in a 100 ml fluid sample. The contamination classes are defined by numeric codes, the size of the contaminant is identified by letters (A-F).

This SAE Aerospace Standard (AS) defines cleanliness levels for particulate contamination of hydraulic fluids and includes methods of reporting data relating to the contamination levels. Tables 1 and 2 below provide differential and cumulative particle counts respectively for counts obtained by an automatic particle counter, e.g. LPA3.

Table 1	- Class	for differer	ntial measurement
---------	---------	--------------	-------------------

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml						
	5-15 µm	15-25 µm	25-50 µm	50-100 µm	>100 µm	(1)	
	6-14 μm _(c)	14-21 µm _(c)	21-38 µm _(c)	38-70 μm _(c)	>70 µm _(c)	(2)	
00	125	22	4	1	0		
0	250	44	8	2	0		
1	500	89	16	3	1	_	
2	1 000	178	32	6	1	-	
3	2 000	356	63	11	2		
4	4 000	712	126	22	4		
5	8 000	1 425	253	45	8		
6	16 000	2 850	506	90	16	_	
7	32 000	5 700	1 012	180	32	_	
8	64 000	11 400	2 025	360	64	_	
9	128 000	22 800	4 050	720	128	_	
10	256 000	45 600	8 100	1 440	256	_	
11	512 000	91 200	16 200	2 880	512	_	
12	1 024 000	182 400	32 400	5 760	1 024	_	

6 - 14 μm _(c) = 15	000 particles
$14 - 21 \ \mu m_{(c)} = 2$	200 particles
21 - 38 µm _(c) =	200 particles
38 - 70 μm _(c) =	35 particles
> 70 µm _(c) =	3 particles

(1) Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range, APC calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent

SAE AS4059 REV G - Class 6

Table 2 - Class for cumulative measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml						
	>1 µm	>5 µm	>15 µm	>25 µm	>50 µm	>100 µm (1)	
	>4 µm _(c)	>6 µm _(c)	$>14 \ \mu m_{(c)}$	$>21 \ \mu m_{(c)}$	$>38 \ \mu m_{(c)}$	>70 µm _(c) (2)	
000	195	76	14	3	1	0	
00	390	152	27	5	1	0	
0	780	304	54	10	2	0	
1	1 560	609	109	20	4	1	
2	3 120	1 217	217	39	7	1	
3	6 250	2 432	432	76	13	2	
4	12 500	4 864	864	152	26	4	
5	25 000	9 731	1 731	306	53	8	
6	50 000	19 462	3 462	612	106	16	
7	100 000	38 924	6 924	1 224	212	32	
8	200 000	77 849	13 849	2 449	424	64	
9	400 000	155 698	27 698	4 898	848	128	
10	800 000	311 396	55 396	9 796	1 696	256	
11	1 600 000	622 792	110 792	19 592	3 392	512	
12	3 200 000	1 245 584	221 584	39 184	6 784	1 024	

 $\begin{array}{l} > \ 4\ \mu m_{(c)} = 45\ 000\ particles \\ > \ 6\ \mu m_{(c)} = 15\ 000\ particles \\ > \ 14\ \mu m_{(c)} = \ 1\ 500\ particles \\ > \ 21\ \mu m_{(c)} = \ 250\ particles \\ > \ 23\ \mu m_{(c)} = \ 15\ particles \\ > \ 38\ \mu m_{(c)} = \ 15\ particles \\ > \ 70\ \mu m_{(c)} = \ 3\ particle \\ SAE\ AS4059\ REV\ G \\ cpc^*\ Class\ 6\ 6/6/5/5/4/2 \end{array}$

 Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range, APC calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent diameter.
 Contamination classes and particle count limits are identical to NAS 1638.

- CLASSES OF CONTAMINATION ACCORDING TO NAS 1638 (January 1964)

The NAS system was originally developed in 1964 to define contamination classes for the contamination contained within aircraft components.

The application of this standard was extended to industrial hydraulic systems simply because nothing else existed at the time.

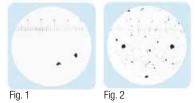
The coding system defines the maximum numbers permitted of 100 ml volume at various size intervals (differential counts) rather than using cumulative counts as in ISO 4406. Although there is no guidance given in the standard on how to quote the levels, most industrial users quote a single code which is the highest recorded in all sizes and this convention is used on MP Filtri APC's.

The contamination classes are defined by a number (from 00 to 12) which indicates the maximum number of particles per 100 ml, counted on a differential basis, in a given size bracket.

	Maximum Contamination Limits per 100 ml						
Class	5-15	15-25	25-50	50-100	>100		
00	125	22	4	1	0		
0	250	44	8	2	0		
1	500	89	16	3	1		
2	1 000	178	32	6	1		
3	2 000	356	63	11	2		
4	4 000	712	126	22	4		
5	8 000	1 425	253	45	8		
6	16 000	2 850	506	90	16		
7	32 000	5 700	1 012	180	32		
8	64 000	11 400	2 025	360	64		
9	128 000	22 800	4 050	720	128		
10	256 000	45 600	8 100	1 440	256		
11	512 000	91 200	16 200	2 880	512		
12	1 024 000	182 400	32 400	5 760	1 024		

5-15 µm	=	42 000	particles
15-25 µm	=	2 200	particles
25-50 µm	=	150	particles
50-100 µm	=	18	particles
> 100 µm	=	3	particles
Class NAS 8	}		

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4407


The level of contamination is defined by counting the number of particles collected by a laboratory membrane per unit of fluid volume. The measurement is done by a microscope. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard. The fluid volume is filtered through the membrane, using a suitable suction system.

The level of contamination is identified by dividing the membrane into a predefined number of areas and by counting the contaminant particles using a suitable laboratory microscope.

MICROSCOPE CONTROL

COMPARISON PHOTOGRAPH'S 1 graduation = 10um

Example figure 1 and 2

For other comparison photographs for contamination classes see the "Fluid Condition and Filtration Handbook".

cumulative particle count

- CLEANLINESS CODE COMPARISON

Although ISO 4406 standard is being used extensively within the hydraulics industry other standards are occasionally required and a comparison may be requested. The table below gives a very general comparison but often no direct comparison is possible due to the different classes and sizes involved.

ISO 4406	SAE AS4059 Table 2	SAE AS4059 Table 1	NAS 1638
> 4 μm _(c) 6 μm _(c) 14 μm _(c)	> 4 μm _(c) 6 μm _(c) 14 μm _(c)	4-6 6-14 14-21 21-38 38-70 >70	5-15 15-25 25-50 50-100 >100
23 / 21 / 18	13A / 12B / 12C	12	12
22 / 20 / 17	12A / 11B / 11C	11	11
21 / 19 / 16	11A / 10B / 10C	10	10
20 / 18 / 15	10A / 9B / 9B	9	9
19 / 17 / 14	9A / 8B / 8C	8	8
18 / 16 / 13	8A / 7B / 7C	7	7
17 / 15 / 12	7A / 6B / 6C	6	6
16 / 14 / 11	6A / 5B / 5C	5	5
15 / 13 / 10	5A / 4B / 4C	4	4
14 / 12 / 09	4A / 3B / 3C	3	3

5 FILTRATION TECHNOLOGIES

Various mechanisms such as mechanical stoppage, magnetism, gravimetric deposit, or centrifugal separation can be used to reduce the level of contamination.

The mechanical stoppage method is most effective and can take place in two ways:

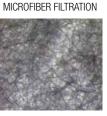
- SURFACE FILTRATION

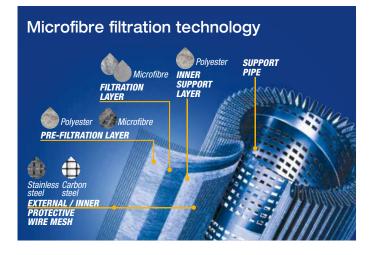
It is by direct interception. The filter prevents particles larger than the pores from continuing in the plant / system. Surface filters are generally manufactured with metal canvases or meshes.

- DEPTH FILTERING

Filters are constructed by fiber interlacing. Such wraps form pathways of different shapes and sizes in which the particles remain trapped when they find smaller apertures than their diameter.

Depth filters are generally produced with papers impregnated with phenolic resins, metal fibers or inorganic fibers.


In inorganic fiber filtration, commonly called microfibre, the filtering layers are often overlapped in order to increase the ability to retain the contaminant.


WIRE MESH FILTRATION

PAPER FILTRATION

The filtration efficiency of metallic mesh filtrations is defined as the maximum particle size that can pass through the meshes of the filtering grid.

The efficiency of microfibre and paper filtration ($\mathcal{B}_{x(c)}$) is defined through a lab test called Multipass Test. The efficiency value ($\mathcal{B}_{x(c)}$) is defined as the ratio between the number of particles of certain dimensions detected upstream and downstream of the filter.

Upstream particles number > X μ m_(c)

 $\frac{1}{\text{Downstream particles number} > X \ \mu m_{(c)}} = \beta_{X(c)}$

Value ($\beta_{x(c)}$)	2	10	75	100	200	1000
Efficiency	50%	90%	98.7%	99%	99.5%	99.9%

Test conditions, such as type of fluid to be used (MIL-H-5606), type of contaminant to be used (ISO MTD), fluid viscosity, test temperature, are determined by ISO 16889.

In addition to the filtration efficiency value during the Multipass test, other important features, such as filtration stability (β stability) and dirt holding capacity (DHC), are also tested.

Poor filtration stability is the cause of the filtering quality worsening as the filter life rises. Low dirt holding capacity causes a reduction in the life of the filter.

Filtration ISO Standard Comparison						
$\beta_{\rm X(C)} > 1000$	$\beta_{\rm X} > 200$	MP Filtri				
ISÓ 16889	ISO 4572	Filter media code				
5 μm _(c)	3 µm	A03				
7 μm _(c)	6 µm	A06				
10 µm _(c)	10 µm	A10				
16 µm _(c)	18 µm	A16				
21 µm _(c)	25 µm	A25				

))) MPFILTRI -

(6) RECOMMENDED CONTAMINATION CLASSES

Any are the nature and the properties of fluids, they are inevitably subject to contamination. The level of contamination can be managed by using special components called filters.

Hydraulic components builders, knowing the problem of contamination, recommend the filtration level appropriate to the use of their products.

Example of recommended contamination levels for pressures below 140 bar.

Piston pumps						
with fixed flow rate	•					
Piston pumps			•			
with variable flow rate			•			
Vane pumps						
with fixed flow rate		•				
Vane pumps			•			
with variable flow			•			
Engines	•					
Hydraulic cylinders	•					
Actuators					•	
Test benches						•
Check valve	•					
Directional valves	•					
Flow regulating valves	•					
Proportional valves				•		
Servo-valves					•	
Flat bearings			•			
Ball bearings				•		
ISO 4406 CODE	20/18/15	19/17/14	18/16/13	17/15/12	16/14/11	15/13/10
Recommended	B _{21(c)}	B15(c)	B10(c)	<i>В</i> 7(с)	B 7(c)	B _{5(c)}
filtration $B_{x(c)\geq 1.000}$	>1000	>1000	>1000	>1000	>1000	>1000
MP Filtri media code	A25	A16	A10	A06	A06	A03

The common classification of filters is determined by their position in the plant.

7 TYPES OF FILTERS

Suction filters

They are positioned before the pump and are responsible for protecting the pump from dirty contaminants. It also provides additional flow guidance to the pump suction line.

Being subject to negligible working pressures are manufactured with simple and lightweight construction.

They are mainly produced with gross grade surface filtrations, mainly 60 \div 125 $\mu m.$ They can be equipped with a magnetic filter for retaining ferrous particles.

They are generally placed under the fluid head to take advantage of the piezometric thrust of the fluid and reduce the risk of cavitation.

There are two types of suction filters:

- IMMERSION FILTERS

Simple filter element screwed on the suction pipe

- FILTERS WITH CONTAINER

Container filters that are more bulky, but provide easier maintenance of the tank

Delivery (or Pressure) filters

They are positioned between the pump and most sensitive regulating and controlling components, such as servo valves or proportional valves, and are designed to ensure the class of contamination required by the components used in the circuit.

Being subjected to high working pressures are manufactured with more robust and articulated construction. In particular situations of corrosive environments or aggressive fluids can be made of stainless steel.

They are mainly produced with filtering depths of 3 \div 25 $\mu m.$

They can be manufactured with in-line connections, with plate or flange connections or directly integrated into the circuit control blocks / manifolds. They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the plant / system is in operation without interruption of the working cycle.

Return filters

They are positioned on the return line to the tank and perform the task of filtering the fluid from particles entering the system from the outside or generated by the wear of the components.

They are generally fixed to the reservoir (for this reason also called top tank mounted), positioned semi-immersed or completely immersed.

The positioning of the return filters must guarantee in all operating conditions that the fluid drainage takes place in immersed condition; this is to avoid creating foams in the tank that can cause malfunctions or cavitation in the pumps.

For the sizing of the return filters, account must be taken of the presence of accumulators or cylinders that can make the return flow considerably greater than the pump suction flow rate.

Being subject to contained working pressures are manufactured with simple and lightweight construction.

Normally it is possible to extract the filter element without disconnecting the filter from the rest of the system.

Combined filters

They are designed to be applied to systems with two or more circuits. They are commonly used in hydrostatic transmission machines where they have a dual filtration function of the return line and suction line of the hydrostatic transmission pump.

The filter is equipped with a valve that keeps the 0.5 bar pressure inside the filter. A portion of the fluid that returns to the tank is filtered by the return filter element, generally produced with absolute filtration, and returns to the transmission booster pump.

Only excess fluid returns to the tank through the valve.

The internal pressure of the filter and the absolute filtration help to avoid the cavitation phenomenon inside the pump.

Off-line filters

They are generally used in very large systems / plants, placed in a closed circuit independent from the main circuit. They remain in operation regardless of the operation of the main circuit and are crossed by a constant flow rate.

They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the unit is in operation without interruption of the work cycle.

Venting filters

During the operation of the plants, the fluid level present in the reservoir changes continuously.

The result of this continuous fluctuation is an exchange of air with the outside environment.

The venting filter function, positioned on the tank, is to filter the air that enters the tank to compensate for fluid level variations.

(8) FILTER SIZING PARAMETERS

The choice of the filter system for an hydraulic system is influenced by several factors.

It is necessary to consider the characteristics of the various components present in the plant and their sensitivity to contamination.

It is also necessary to consider all the tasks that the filter will have to do within the plant:

- FLUID PROTECTION FROM CONTAMINATION
- PROTECTION OF OLEODYNAMIC COMPONENTS SENSITIVE TO CONTAMINATION
- PROTECTION OF OLEODYNAMIC PLANTS FROM ENVIRONMENTAL WASTE
- PROTECTION OF OLEODYNAMIC PLANTS FROM CONTAMINATION CAUSED BY COMPONENTS' FAILURES

The advantages of proper positioning and sizing of the filters are

- MORE RELIABILITY OF THE SYSTEM
- LONGER LIFE OF THE FLUID COMPONENTS
- REDUCTION OF STOP TIME
- REDUCTION OF FAILURE CASUALITIES

Each hydraulic filter is described by general features that identify the possibility of use in different applications.

• MAXIMUM WORKING PRESSURE (Pmax)

The maximum working pressure of the filter must be greater than or equal to the pressure of the circuit section in which it will be installed.

PRESSURE DROP (ΔP)

The pressure drop depends on a number of factors, such as the working circuit temperature, the fluid viscosity, the filter element cleaning condition.

• WORKING TEMPERATURE (T)

The working temperature deeply affect the choice of materials. Excessively high or low temperatures may adversely affect the strength of the materials or the characteristics of the seals.

FILTRATION EFFICIENCY (%) / FILTRATION RATIO (β_{x(c)})

Filtration efficiency is the most important parameter to consider when selecting a filter.

When choosing the filtration performances, the needs of the most sensitive components in the system must be considered.

• FLUID TYPE

The type of fluid influences the choice of filters in terms of compatibility and viscosity. It is always mandatory to check the filterability.

• PLACEMENT IN THE PLANT

The position of the filter in the system conditions the efficiency of all filter performances.

(9) APPLICABLE STANDARDS FOR FILTER DEVELOPMENT

In order to obtain unique criteria for development and verification of the filters performance, specific regulations for the filters and filter elements testing have been issued by ISO. These norms describe the target, the methodology, the conditions and the presentation methods for the test results.

ISO 2941

Hydraulic fluid power -- Filter elements -- Verification of collapse/burst pressure rating

This Standard describes the method for testing the collapse / burst resistance of the filter elements.

The test is performed by crossing the contaminated fluid filter element at a predefined flow rate. The progressive clogging of the filter element, determined by contamination, causes an increase in differential pressure.

ISO 2942

Hydraulic fluid power -- Filter elements -- Verification of fabrication integrity and determination of the first bubble point

This Standard describes the method to verify the integrity of the assembled filter elements.

It can be used to verify the quality of the production process or the quality of the materials by verifying the pressure value of the first bubble point.

ISO 2943

Hydraulic fluid power -- Filter elements -- Verification of material compatibility with fluids

This Standard describes the method to verify the compatibility of materials with certain hydraulic fluids.

The test is carried out by keeping the element (the material sample) immersed in the fluid under high or low temperature conditions for a given period of time and verifying the retention of the characteristics.

ISO 3723

Hydraulic fluid power -- Filter elements -- Method for end load test

This Standard describes the method for verifying the axial load resistance of the filter elements.

After performing the procedure described in ISO 2943, the designed axial load is applied to the filter element. To verify the test results, then the test described in ISO 2941 is performed.

ISO 3968

Hydraulic fluid power -- Filters -- Evaluation of differential pressure versus flow characteristics

This Standard describes the method for checking the pressure drop across the filter.

The test is carried out by crossing the filter from a given fluid and by detecting upstream and downstream pressures.

Some of the parameters defined by the Standard are the fluid, the test temperature, the size of the tubes, the position of the pressure detection points.

ISO 16889

())) MPFILTRI

Hydraulic fluid power -- Filters -- Multi-pass method for evaluating filtration performance of a filter element

This Standard describes the method to check the filtration characteristics of the filter elements.

The test is performed by constant introduction of contaminant (ISO MTD). The characteristics observed during the test are the filtration efficiency and the dirty holding capacity related to the differential pressure.

ISO 23181

Hydraulic fluid power -- Filter elements -- Determination of resistance to flow fatigue using high viscosity fluid

This Standard describes the method for testing the fatigue resistance of the filter elements. The test is carried out by subjecting the filter to continuous flow variations, thus differential pressure, using a high viscosity fluid.

ISO 11170

Hydraulic fluid power -- Sequence of tests for verifying performance characteristics of filter elements

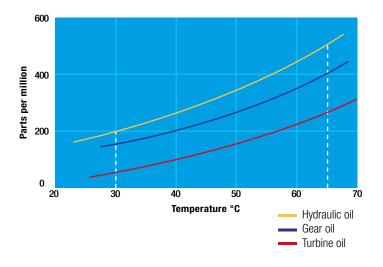
The Standard describes the method for testing the performance of filter elements. The protocol described by the regulations provides the sequence of all the tests described above in order to verify all the working characteristics (mechanical, hydraulic and filtration).

ISO 10771-1

Hydraulic fluid power -- Fatigue pressure testing of metal pressure-containing envelopes -- Test method

This Standard describes the method to check the resistance of the hydraulic components with pulsing pressure.

It can be applied to all metal components (excluding tubes) subject to cyclic pressure used in the hydraulic field.

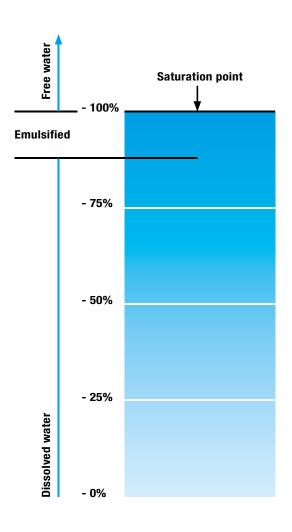

10 WATER IN HYDRAULIC AND LUBRICATING FLUIDS

Water Content

In mineral oils and non aqueous resistant fluids water is undesirable. Mineral oil usually has a water content of 50-300 ppm (@40°C) which it can support without adverse consequences.

Once the water content exceeds about 300ppm the oil starts to appear hazy. Above this level there is a danger of free water accumulating in the system in areas of low flow. This can lead to corrosion and accelerated wear.

Similarly, fire resistant fluids have a natural water which may be different to mineral oil.


Saturation Levels

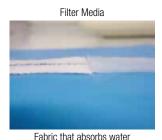
Since the effects of free (also emulsified) water is more harmful than those of dissolved water, water levels should remain well below the saturation point.

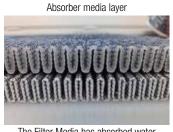
However, even water in solution can cause damage and therefore every reasonable effort should be made to keep saturation levels as low as possible. There is no such thing as too little water. As a guideline, we recommend maintaining saturation levels below 50% in all equipment.

TYPICAL WATER SATURATION LEVEL FOR NEW OILS Examples:

Hydraulic oil @ 30° C = 200 ppm = 100% saturation Hydraulic oil @ 65° C = 500 ppm = 100% saturation

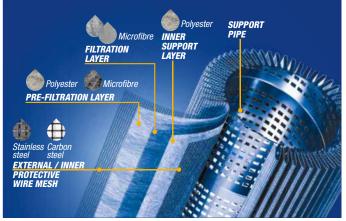
Water absorber


Water is present everywhere, during storage, handling and servicing.


MP Filtri filter elements feature an absorbent media which protects hydraulic systems from both particulate and water contamination.

MP Filtri's filter element technology is available with inorganic microfiber media with a filtration rating 25 µm (therefore identified with media designation WA025), providing absolute filtration of solid particles to $B_{X(C)} = 1000$.

Absorbent media is made by water absorbent fibres which increase in size during the absorption process.


Free water is thus bonded to the filter media and completely removed from the system (it cannot even be squeezed out).

The Filter Media has absorbed water

Microfibre filtration technology

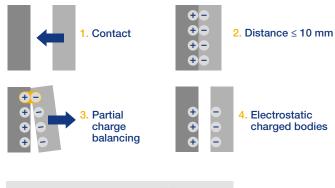
By removing water from your fluid power system, you can prevent such key problems as:

- corrosion (metal etching)
- loss of lubricant power
- accelerated abrasive wear in hydraulic components
- valve-locking
- bearing fatigue
- viscosity variance (reduction in lubricating properties)
- additive precipitation and oil oxidation
- increase in acidity level
- increased electrical conductivity (loss of dielectric strength)
- slow/weak response of control systems

Product availability:

LOW & MEDIUM PRESSURE FILTERS - LMP Series

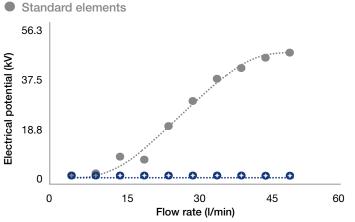
LMP 210	LMP 900
LMP 211	LMP 901
LMP 400	LMP 902
LMP 401	LMP 903
LMP 430	LMP 950


(11) THE ANTI-STATIC FILTERS

zerospark is a specialist solution designed to solve the problem of electrostatic discharge inside hydraulic filters. Caused by the electrical charge build-up due to the passage of oil through the filters, this can result in damage to filter elements, oils and circuit components. It can even cause fire hazards in environments where flammable materials are present.

THE TRIBOELECTRIC EFFECT

The body with the most electronegativity strips electrons from the other, generating a build-up of a net negative charge on itself. The other body is charged by the same amount but with the opposite sign, giving rise to very high potential differences. These, if not dissipated, can give rise to electrostatic discharges.



DISSIPATIVE FILTER ELEMENTS

To solve the problem of charge build-up in filters, MP Filtri has developed an innovative solution. By replacing certain insulating components with conductive zerospark versions, the charges on the media are free to move towards the head and are thus dissipated to the ground.

())) MPFILTRI

Under standard working conditions, the potential goes from tens of kV to zero, clearly showing the effectiveness of our dissipative filters.

The following table summarises some examples of test results at the same flow rate and temperature for elements of the same size but made of different materials.

Filter element	Electrical potential (kV)	Current (µA)
Standard glass microfibre	11	-6.0
Dissipative glass microfibre	e 0	-9.0
Standard cellulose	6	-1.3
Dissipative cellulose	0	-2.1
Other glass microfibre	9-15	-7.0
Other glass microfibre	3-8	-16.0

When using a synthetic oil instead of mineral oil, the values and sign of the two electrical quantities may vary.

	Mineral oil	Synthetic oil
Filter element	Electrical p	otential (kV)
Standard glass microfibre	+11	+30
Dissipative glass microfibre	0	~0.0
Standard cellulose	+6	-43
Dissipative cellulose	0	~0.0

INDEX

	Page
CALCULATION	23
CORRECTIVE FACTOR	24

THE CORRECT FILTER SIZING HAS TO BE BASED ON THE TOTAL PRESSURE DROP DEPENDING BY THE APPLICATION.

FOR EXAMPLE, THE MAXIMUM TOTAL PRESSURE DROP ALLOWED BY A NEW AND CLEAN RETURN FILTER HAVE TO BE IN THE RANGE 0.4 - 0.6 bar / 5.80 - 8.70 psi.

The pressure drop calculation is performed by adding together the value of the housing with the value of the filter element. The pressure drop Δpc of the housing is proportional to the fluid density (kg/dm³ / lb/ft³). The filter element pressure drop Δpe is proportional to its viscosity (mm²/s / SUS), the corrective factor Y have to be used in case of an oil viscosity different than 30 mm²/s (cSt) / 150 SUS.

Sizing data for single filter element, head at top Δpc = Filter housing pressure drop [bar / psi] Δpe = Filter element pressure drop [bar / psi] Y = Corrective factor Y (see correspondent table), depending on the filter type, on the filter element size, on the filter element length and on the filter media

Q = flow rate (l/min - gpm)

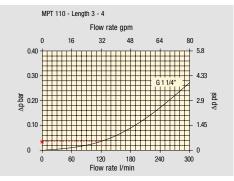
V1 reference oil viscosity = $30 \text{ mm}^2/\text{s}$ (cSt) /150 SUS **V2** = operating oil viscosity in mm²/s (cSt) / SUS

Filter element pressure drop calculation with an oil viscosity different than 30 mm²/s (cSt) / 150 SUS

International system: $\Delta pe = Y : 1000 \times Q \times (V2:V1)$

Impe rial system: Δpe = Y : 17.2 x Q x (V2:V1)

Δp Tot. = $\Delta pc + \Delta pe$


Verification formula Δp Tot. $\leq \Delta p$ max allowed

Maximum total pressure drop (Δp max) allowed by a new and clean filter

Application R	ange:[bar]	[psi]	
Suction filters	0.08 - 0.10 bar	1.16 - 1.45 psi	
Return filters	0.4 - 0.6 bar	5.80 - 8.70 psi	
Return - Suction filte	rs (*) 0.8 - 1.0 bar	11.60 - 14.50 p	si
	0.4 - 0.6 bar	5.80 - 8.70 psi	return lines
Low & Medium	0.3 - 0.5 bar	4.35 - 7.25 psi	lubrication lines
Pressure filters	0.3 - 0.4 bar	4.35 - 5.80 psi	off-line in power systems
	<u>0.1 - 0.3 bar</u>	1.45 - 4.35 psi	off-line in test benches
	0.4 - 0.6 bar	5.80 - 8.7 psi	over-boost
High Pressure filters	0.8 - 1.5 bar	11.60 - 21.75 p	si
Stainless Steel filters	6 0.8 - 1.5 bar	11.60 - 21.75 p	si

(*) The suction flow rate should not exceed 30% of the return flow rate

Generic filter calculation example Application data: Tank top return filter Pressure Pmax = 10 bar Flow rate Q = 120 l/min Viscosity V2 = 46 mm²/s (cSt) Oil density = 0.86 kg/dm³ Required filtration efficiency = 25 μ m with absolute filtration With bypass valve and G 1 1/4" inlet connection Calculation: **Δpc = 0.03 bar / 0.43 psi** (see graphic below)

Filter housings Δp pressure drop. The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

$\Delta pe = (2.00): 1000) \times 120 \times (46: 30) = 0.37$ bar $\Delta pe = (2.00): 17.2) \times 32 \times (216: 150) = 5.36$ psi

Filter element		Abso	lute filt H Series	ration			i nal filtr N Series		
Туре		A03	A06	A10	A16	A25	P10	P25	M25 M60 M90
Return filter	s								
		74.00	50.08	20.00	16.00	9.00	6.43	5.51	4.40
MF 020	2	29.20	24.12	8.00	7.22	5.00	3.33	2.85	2.00
MI 020	3	22.00	19.00	6.56	5.33	4.33	1.68	1.44	1.30
MF 030 MFX 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
MF 100	2	17.33	12.50	6.86	5.70	4.00	3.05	2.47	1.10
MFX 100	3	10.25	9.00	3.65	3.33	2.50	1.63	1.32	0.96
	4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82

Δp Tot. = 0.03 + 0.37 = 0.4 bar Δp Tot. = 0.43 + 5.36 = 5.79 psi

The selection is correct because the total pressure drop value is inside the admissible range for top tank return filters. In case the allowed max total pressure drop is not verified, it is necessary to repeat the calculation changing the filter length/size.

FILTER SIZING Corrective factor

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media. Reference oil viscosity 30 mm²/s

MPFILTRI

Return filters

1 2 3 1 1 2 3	A03 74.00 29.20 22.00 74.00	A06 50.08 24.12 19.00 50.08	A10 20.00 8.00 6.56	A16 16.00 7.22	A25	P10	P25	M25 M60 M90
2 3 1 1 2	29.20 22.00 74.00	24.12 19.00	8.00		0.00			
3 1 1 2	22.00 74.00	19.00		7 00	9.00	6.43	5.51	4.40
1 1 2	74.00		0.00		5.00	3.33	2.85	2.00
1 2		50.08		5.33	4.33	1.68	1.44	1.30
2	00 00		20.00	16.00	9.00	6.43	5.51	3.40
	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
3	17.33 10.25	12.50 9.00	6.86 3.65	5.70 3.33	4.00 2.50	3.05 1.63	2.47 1.32	1.10
4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.30
1	3 67	3 05	1 64	1.56	1 24	1 18	1.06	0.26
2	1.69	1.37	0.68	0.54	0.51	0.43	0.39	0.12
2	1.69	1.37	0.60	0.49	0.44	0.35	0.31	0.11
1	3.20	2.75	1.39	1.33	1.06	0.96	0.87	0.22
2	2.00	1.87	0.88	0.85	0.55	0.49	0.45	0.13
13	1.90	1.60	0.63	0.51	0.49	0.39	0.35	0.11
1	1.08	0.84	0.49	0.36	0.26	0.21	0.19	0.06
12	3.00	3.04	1.46	1.25	1.17	-	-	M25 0.20
2	1.29	1.26	0.52	0.44	0.38	-	-	M25 0.10
	78.00	48.00	28.00	24.00	9.33	9.33	8.51	1.25
	25.88	20.88	10.44	10.00	3.78	3.78	3.30	1.25
	15.20	14.53	5.14	4.95	2.00	2.00	0.17	1.10
	3.25	2.55	1.55	1.35	0.71	0.71	0.59	0.25
	1.96	1.68	0.85	0.72	0.42	0.42	0.36	0.09
	1.06	0.84	0.42	0.33	0.17	0.17	0.13	0.04
2	3.61	4.08	1.81	1.71	1.35	-	-	M25 0.55
4	2.10	1.70	1.14	0.77	0.53	-	-	0.60
1	19.00	17.00	6.90	6.30	4.60	2.94	2.52	1.60
								1.37
								1.34 1.34
5	4.20	3.84	2.36	2.40	1.90	1.60	1.37	1.34
1	5.35	4.85	2.32	1.92	1,50	1.38	1,20	0.15
2	4.00	3.28	1.44	1.10	1.07	0.96	0.83	0.13
3	2.60	2.20	1.08	1.00	0.86	0.77	0.64	0.12
4	1.84	1.56	0.68	0.56	0.44	0.37	0.23	0.11
1	3.10	2.48	1.32	1.14	0.92	0.83	0.73	0.09 0.08
								0.08
4	1.30	1.20	0.00	0.30	0.20	0.22	0.17	0.00
5	0.74	0.65	0.30	0.28	0.13	0.10	0.08	0.04
1	0.60	0.43	0.34	0.25	0.13	0.12	0.09	0.03
2	0.37	0.26	0.23	0.21	0.11	0.08	0.07	0.03
								0.02
	12 12 3 11 12 12 12 12 12 12 12 12 12 12 12 33 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1	1 3.67 2 1.69 12 1.69 12 1.69 12 1.69 1 3.20 2 2.00 3 1.90 11 1.08 12 3.00 12 3.00 12 3.00 12 3.00 12 1.29 12 3.00 12 1.29 1 1.29 1 1.29 1 1.29 1 1.96 2 3.61 4 2.10 1 1.96 2 3.61 4 2.10 3 7.80 4 5.50 5 4.20 1 1.3.10 2 2.06 3 1.48 4 1.30 5 0.74 1 0.60	I 3.67 3.05 1.69 1.37 12 1.69 1.37 12 1.69 1.37 12 1.69 1.37 12 1.69 1.37 12 1.69 1.37 12 1.69 1.37 1 3.20 2.75 2 2.00 1.87 3 1.90 1.60 11 1.08 0.84 12 3.00 3.04 12 1.29 1.26 78.00 48.00 2 3.61 4.80 1 1.96 1.453 3 3.25 2.55 1 1.96 1.68 1 1.96 1.68 1 1.96 1.68 1 1.96 1.70 2 3.61 4.08 4 1.06 0.84 2 3.61 4.08 <td< td=""><td>Image Image Image Image 1 3.67 3.05 1.64 1.69 1.37 0.68 12 1.69 1.37 0.60 1 3.20 2.75 1.39 2 2.00 1.87 0.88 3 1.90 1.60 0.63 11 1.08 0.84 0.49 12 3.00 3.04 1.46 12 1.29 1.26 0.52 78.00 48.00 28.00 2 25.88 20.88 10.44 15.20 14.53 5.14 3.25 2.55 1.55 1.96 1.68 0.85 1.96 1.68 0.85 1.96 1.68 0.42 2 3.61 4.08 1.81 4 2.10 1.70 1.14 1 1.90 17.00 6.90 2 1.70 1.80 <</td><td>Image Image <thimage< th=""> Image <thi< td=""><td>Image: Constraint of the symbol of</td><td>1 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 12 1.69 1.37 0.68 0.49 0.44 0.35 1 3.20 2.75 1.39 1.33 1.06 0.96 2 2.00 1.87 0.88 0.85 0.55 0.49 3 1.90 1.60 0.63 0.51 0.49 0.39 11 1.08 0.84 0.49 0.36 0.26 0.21 12 3.00 3.04 1.46 1.25 1.17 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.20 1453 5.14 4.95 2.00 2.00 15.20</td><td>1 0 0 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 1.06 12 1.69 1.37 0.68 0.54 0.51 0.43 0.39 12 1.69 1.37 0.60 0.49 0.44 0.35 0.31 1 3.20 2.75 1.39 1.33 1.06 0.99 0.39 0.35 1 1.90 1.60 0.63 0.51 0.49 0.39 0.35 12 3.00 3.04 1.46 1.25 1.17 12 1.29 1.26 0.52 0.44 0.38 12 1.20 1.26 0.52 0.44 0.38 3.78 3.30 1 15.0 14.53 5.14 4.95 2.00 2.00 0.17 1 1.90 1.68 0.85</td></thi<></thimage<></td></td<>	Image Image Image Image 1 3.67 3.05 1.64 1.69 1.37 0.68 12 1.69 1.37 0.60 1 3.20 2.75 1.39 2 2.00 1.87 0.88 3 1.90 1.60 0.63 11 1.08 0.84 0.49 12 3.00 3.04 1.46 12 1.29 1.26 0.52 78.00 48.00 28.00 2 25.88 20.88 10.44 15.20 14.53 5.14 3.25 2.55 1.55 1.96 1.68 0.85 1.96 1.68 0.85 1.96 1.68 0.42 2 3.61 4.08 1.81 4 2.10 1.70 1.14 1 1.90 17.00 6.90 2 1.70 1.80 <	Image Image <thimage< th=""> Image <thi< td=""><td>Image: Constraint of the symbol of</td><td>1 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 12 1.69 1.37 0.68 0.49 0.44 0.35 1 3.20 2.75 1.39 1.33 1.06 0.96 2 2.00 1.87 0.88 0.85 0.55 0.49 3 1.90 1.60 0.63 0.51 0.49 0.39 11 1.08 0.84 0.49 0.36 0.26 0.21 12 3.00 3.04 1.46 1.25 1.17 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.20 1453 5.14 4.95 2.00 2.00 15.20</td><td>1 0 0 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 1.06 12 1.69 1.37 0.68 0.54 0.51 0.43 0.39 12 1.69 1.37 0.60 0.49 0.44 0.35 0.31 1 3.20 2.75 1.39 1.33 1.06 0.99 0.39 0.35 1 1.90 1.60 0.63 0.51 0.49 0.39 0.35 12 3.00 3.04 1.46 1.25 1.17 12 1.29 1.26 0.52 0.44 0.38 12 1.20 1.26 0.52 0.44 0.38 3.78 3.30 1 15.0 14.53 5.14 4.95 2.00 2.00 0.17 1 1.90 1.68 0.85</td></thi<></thimage<>	Image: Constraint of the symbol of	1 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 12 1.69 1.37 0.68 0.49 0.44 0.35 1 3.20 2.75 1.39 1.33 1.06 0.96 2 2.00 1.87 0.88 0.85 0.55 0.49 3 1.90 1.60 0.63 0.51 0.49 0.39 11 1.08 0.84 0.49 0.36 0.26 0.21 12 3.00 3.04 1.46 1.25 1.17 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.20 1453 5.14 4.95 2.00 2.00 15.20	1 0 0 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 1.06 12 1.69 1.37 0.68 0.54 0.51 0.43 0.39 12 1.69 1.37 0.60 0.49 0.44 0.35 0.31 1 3.20 2.75 1.39 1.33 1.06 0.99 0.39 0.35 1 1.90 1.60 0.63 0.51 0.49 0.39 0.35 12 3.00 3.04 1.46 1.25 1.17 12 1.29 1.26 0.52 0.44 0.38 12 1.20 1.26 0.52 0.44 0.38 3.78 3.30 1 15.0 14.53 5.14 4.95 2.00 2.00 0.17 1 1.90 1.68 0.85

Return / Suction filters

noturn /									
Filter element	Absolute filtration								
Туре	A10	A16	A25						
1 RSX 116 2	5.12 2.22	4.33 1.87	3.85 1.22						
RSX 165 1 2 RSX 166 3	2.06 1.24 0.94	1.75 1.05 0.86	1.46 0.96 0.61						

Filter eleme	nt	Absolute filtration N Series							
Туре		A03	A06	A10	A16	A25	P10	P25	M25 M60 M90
	1	16.25 12.62	15.16 10.44	8.75 6.11	8.14 6.02	5.87 4.16	2.86 1.60	2.65 1.49	0.14
CU 110	3	8.57	7.95	5.07	4.07	2.40	1.24	1.15	0.11
	4	5.76	4.05	2.80	2.36	1.14	0.91	0.85	0.05

Low & Medium pressure filters

Filter elem			Abso N	l ute filt -W Serie	ration es		Nominal filtration N Series			
Туре		A03	A06	A10	A16	A25	P10	P25	M25	
CU 110	1 2 3 4	16.25 12.62 8.57 5.76	15.16 10.44 7.95 4.05	8.75 6.11 5.07 2.80	8.14 6.02 4.07 2.36	5.87 4.15 2.40 1.14	2.86 1.60 1.24 0.91	2.65 1.49 1.15 0.85	0.14 0.12 0.11 0.05	
CU 210	1 2 3	5.30 3.44 2.40	4.80 2.95 1.70	2.00 1.24 0.94	1.66 1.09 0.84	1.32 0.70 0.54	0.56 0.42 0.33	0.43 0.35 0.23	0.12 0.09 0.05	
DN	016 025 040	7.95 5.00 3.13	7.20 4.53 2.66	3.00 1.89 1.12	2.49 1.57 0.98	1.98 1.25 0.63	0.84 0.53 0.38	0.65 0.41 0.32	0.18 0.11 0.08	
CU 400	2 3 4 5 6	3.13 2.15 1.60 1.00 0.82	2.55 1.70 1.28 0.83 0.58	1.46 0.94 0.71 0.47 0.30	1.22 0.78 0.61 0.34 0.27	0.78 0.50 0.40 0.20 0.17	0.75 0.40 0.34 0.24 0.22	0.64 0.34 0.27 0.19 0.18	0.19 0.10 0.08 0.06 0.05	
CU 900	1	0.86	0.63	0.32	0.30	0.21	-	-	0.05	
CU 950	2 3	1.03 0.44	0.80 0.40	0.59 0.27	0.40 0.18	0.26 0.15	-	-	0.05 0.02	
MR 63	D 7	0.88	0.78	0.36	0.34	0.16	0.12	0.96	0.47	

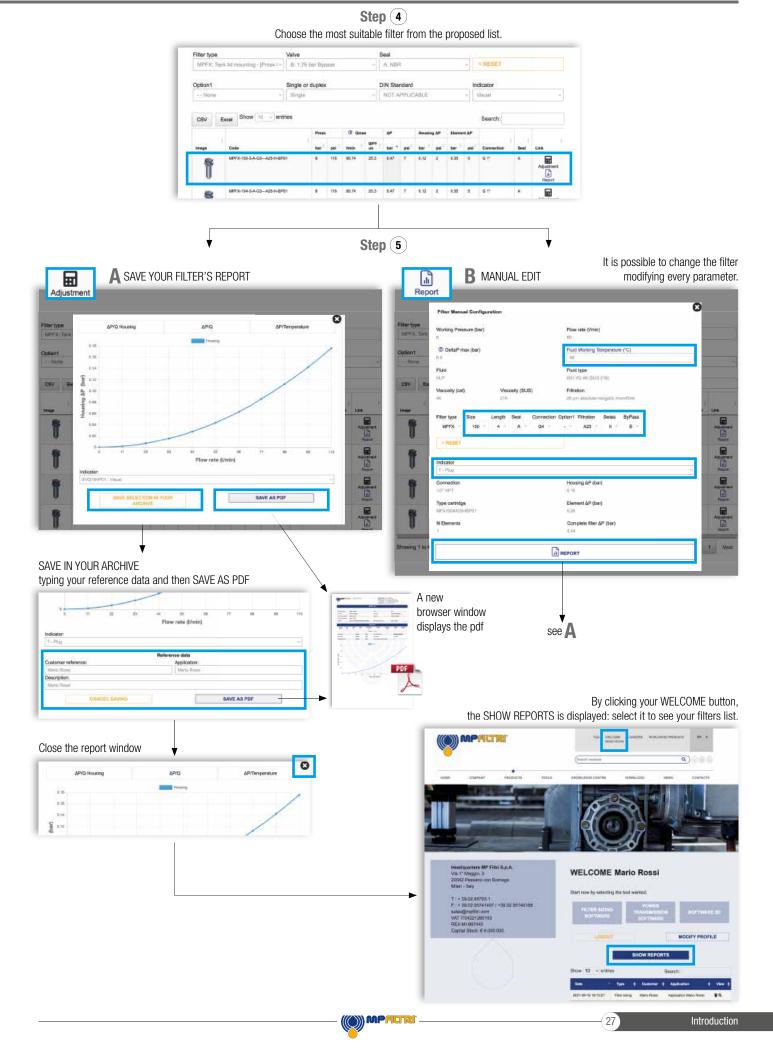
Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media. Reference oil viscosity 30 mm²/s

High pressure filters

Stainless steel high pressure filters and Filters for potentially explosive atmosphere

Filter	ЛС	SSUIC III		oluto filtro	tion		Nominal filtration
elemer	nt			olute filtra N - R Serie			Nominal filtration N Series
Туре		A03	A06	A10	A16	A25	M25
	1	332.71	250.07	184.32	152.36	128.36	-
	2	220.28	165.56	74.08	59.13	37.05	-
HP 011	3	123.24	92.68	41.48	33.08	20.72	-
	4	77.76	58.52	28.37	22.67	16.17	-
	2	70.66	53.20	25.77	20.57	14.67	4.90
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90
	4	26.57	23.27	12.46	8.80	5.58	2.20
	1	31.75	30.30	13.16	12.3	7.29	1.60
	2	24.25	21.26	11.70	9.09	4.90	1.40
HP 050	3	17.37	16.25	8.90	7.18	3.63	1.25
	4	12.12	10.75	6.10	5.75	3.08	1.07
	5	7.00	6.56	3.60	3.10	2.25	0.80
	1	58.50	43.46	23.16	19.66	10.71	1.28
HP 065	2	42.60	25.64	16.22	13.88	7.32	1.11
	3	20.50	15.88	8.18	6.81	3.91	0.58
	1	20.33	18.80	9.71	8.66	4.78	2.78
HP 135	2	11.14	10.16	6.60	6.38	2.22	1.11
	3	6.48	6.33	3.38	3.16	2.14	1.01
	1	17.53	15.91	7.48	6.96	5.94	1.07
HP 150	2	8.60	8.37	3.54	3.38	3.15	0.58
	3	6.53	5.90	2.93	2.79	2.12	0.49
	1	10.88	9.73	5.02	3.73	2.54	1.04
HP 320	2	4.40	3.83	1.75	1.48	0.88	0.71
111 520	3	2.75	2.11	1.05	0.87	0.77	0.61
	4	2.12	1.77	0.98	0.78	0.55	0.47
	1	4.44	3.67	2.30	2.10	1.65	0.15
	2	3.37	2.77	1.78	1.68	1.24	0.10
HP 500	3	2.22	1.98	1.11	1.09	0.75	0.08
	4	1.81	1.33	0.93	0.86	0.68	0.05
	5	1.33	1.15	0.77	0.68	0.48	0.04
Filter elemer	nt				l ute filtrati N Series	on	
Туре		A03	A06	A10	A16	A25	M25
	1	3.65	2.95	2.80	1.80	0.90	0.38
HF 325	2	2.03	1.73	1.61	1.35	0.85	0.36
	3		1.42	1.32	1.22	0.80	0.35

Filter element	t		Abs	olute filtra N Series	tion	
Туре		A03	A06	A10	A16	A25
	1	332.71	250.07	184.32	152.36	128.36
HP 011	2	220.28	165.56	74.08	59.13	37.05
	3	123.24	92.68	41.48	33.08	20.72
	4	77.76	58.52	28.37	22.67	16.17
	2	70.66	53.20	25.77	20.57	14.67
HP 039	3	36.57	32.28	18.00	13.38	8.00
	4	26.57	23.27	12.46	8.80	5.58
	1	31.75	30.30	13.16	12.3	7.29
	2	24.25	21.26	11.70	9.09	4.90
HP 050 HPX 050	3	17.37	16.25	8.90	7.18	3.63
	4	12.12	10.75	6.10	5.75	3.08
	5	7.00	6.56	3.60	3.10	2.25
	1	20.33	18.80	9.71	8.66	4.78
HP 135	2	11.14	10.16	6.60	6.38	2.22
	3	6.48	6.33	3.38	3.16	2.14


Filter element	t			olute filtra H - U Series		
Туре		A03	A06	A10	A16	A25
HP 011	1	424.58	319.74	235.17	194.44	163.78
	2	281.06	211.25	94.53	75.45	47.26
	3	130.14	97.50	43.63	34.82	21.81
	4	109.39	82.25	36.79	29.37	18.40
HP 039	2	73.00	57.00	28.00	24.00	17.20
	3	40.90	36.33	21.88	18.80	11.20
	4	31.50	28.22	17.22	9.30	6.70
HP 050 HPX 050	1 2 3 4 5	47.33 29.10 20.85 14.55 9.86	34.25 25.95 19.50 12.90 9.34	21.50 14.04 10.68 7.32 6.40	20.50 10.90 8.61 6.90 4.80	14.71 5.88 4.36 3.69 2.50
HP 135	1	29.16	25.33	13.00	12.47	5.92
	2	14.28	11.04	7.86	7.60	4.44
	3	8.96	7.46	4.89	4.16	3.07

Suction filters

Filter element	Nominal filtration N Series											
Туре	P10	P25	M25	M60	M90	M250						
SF 250	0.65	0.20	0.10	0.08	0.05	0.03						
SF 503	-	-	0.17	0.11	0.11	0.11						
SF 504	-	-	0.11	0.08	0.08	0.08						
SF 505	-	-	0.23	0.18	0.18	0.18						
SF 510	-	-	0.18	0.14	0.14	0.14						
SF 535	-	-	0.08	0.05	0.05	0.05						
SF 540	_	_	0.05	0.04	0.04	0.04						

TYPICAL FILTER SIZING Selection Software

LMP - low and medium pressure filters are used as process filters to protect pumps, pressure reducers and hydraulic circuits from damage due to oil contamination as per ISO 4406.

LMP series is available in 5 different sizes: 100, 200, 400, 900 and 950 and a wide range of versions.

LMP filters are available with several working pressures suitable for all hydraulic circuits as:

- return filters in external tank mounting construction for medium and high flow rates in single and duplex versions
- in-line filters for low and medium pressures for off-line applications
- in-line process filters for medium pressures, for example, for forced lubrication applications, in single or duplex versions
- in-line filters for medium pressures for filtering hydraulic boost circuits
- in-line filters as high holding capacity filters on test beds

LMP filters are thus specifically designed to be suitable for a wide range of application: from steel plants to mobile equipments, from test benches to naval application, providing the right solution for filtering requirements in all sectors.

LMP filters are available in single, manifold and duplex versions (LMD series).

For the proper corrective factor Y see chapter at page 24

Low & Medium Pressure filters

	page 308
LMP 110 - 120 - 123 MULTIPORT	319
LMP 210 - 211	335
LMP 400 - 401 & 430 - 431	345
LMP 950 - 951	357
LMP 952 - 953 - 954	365
LMD 211	377
LMD 400 - 401 & 431	385

LMD 951	page	401
Filter element according to DIN 24550		409
LDP - LDD		411
LMP 900 - 901		421
LMP 902 - 903		429
ACCESSORIES		438
INDICATORS		686

THE CONCEPT FOR OUR FILTERS

Protect the performance of your system with MYclean. Quality and efficiency are fundamental for MP Filtri: this exclusive new filter element possesses polygon shape geometry and specific seal that ensures only original spare parts can be used - ensuring correct operation and higher system reliability.

with MCLEAN FEX Filter Element

Protects the machine from improper use of non-original products.

Safety of constant quality protection & reliability

With exclusive filter element you are sure that only MP Filtri filter elements can be used, ensuring the best cleaning level of the oil due to the use of originals filter elements.

The products identified as LFEX are protected by:

- Italian Patent n° 102014902261205
- Canadian Patent n° 2,937,258
- European Patent n° 3 124 092 B1
- US Patent n° 20170030384 A1

Maximum working pressure up to 1.6 MPa (16 bar) - Flow rate up to 300 l/min

ΞX general information

Description

Technical data

1 0	Ma alleria	Dueses we filtere
LOW &	wealum	Pressure filters

Maximum working pressure up to 1.6 MPa (16 bar) Flow rate up to 300 l/min

LFEX is a range of low pressure filter for protection of sensitive components in low pressure hydraulic systems.

They are also suitable for the off-line filtration of small reservoirs. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1 1/4" and SAE connections up to 1 5/8", for a maximum flow rate of 300 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid
- Bypass valve, to relieve excessive pressure drop across the filter media - NEW Visual and electrical differential clogging indicators, capable to
- MYclean interface connection for the filter element, to protect the
- MYclean interface connection for the filter element, to protect the product against non-original spare parts
- External protective wrap, to optimize the flow through the element and to save the element efficiency against non-proper handling

Common applications:

Delivery lines, in any low pressure industrial equipment or mobile machines

- Bypass valve: Polyamide - Steel - Bowl: Polyamide

Filter housing materials

- Head: Aluminium

Bypass valve Opening pressure 350 kPa (3.5 bar) ±10%

∆p element type

- Microfibre filter elements series N: 8 bar
- Fluid flow through the filter element from OUT to $\ensuremath{\mathsf{IN}}$

Seals Standard NBR series A

Temperature From -25 °C to +110 °C

Note LFEX filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]	Volumes [dm ³]
LFEX 060	1.00	0.60
LFEX 080	1.15	0.80
LFEX 110	1.90	1.60
LFEX 160	2.10	2.00

Hydraulic symbols

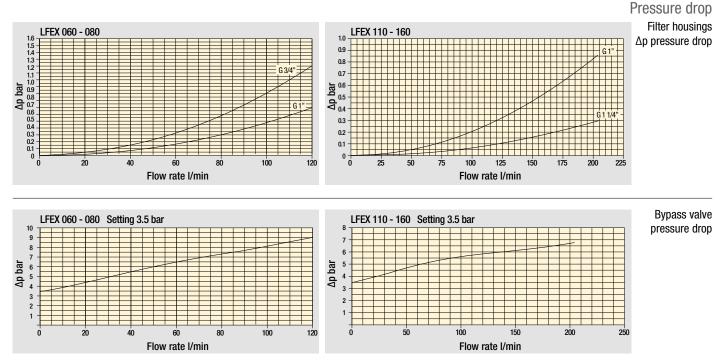
Filter series	Style S	Style B
LFEX 060	•	•
LFEX 080	•	•
LFEX 110	•	•
LFEX 160	•	•
	D.I.	

GENERAL INFORMATION

FILTER ASSEMBLY SIZING

Flow rates [l/min]

Filter element design - N Series											
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LFEX 060	45	47	65	66	68	84	84	86	67	73	
LFEX 080	58	59	73	72	76	86	87	88	79	82	
Connections of filter under test G 3/4"											
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LFEX 060	49	51	75	77	80	104	105	107	74	95	
LFEX 080	67	67	86	87	92	107	108	110	96	112	
Connections of filter under test G 1"											
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LFEX 110	107	115	182	195	216	295	298	300	232	242	
LFEX 160	146	150	210	212	237	300	303	304	254	262	


Connections of filter under test G 1 1/4"

Maximum flow rate for a complete delivery filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

Please, contact our Sales Department for further additional information.

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

LFEX LFEX060 - LFEX080

Designation & Ordering code

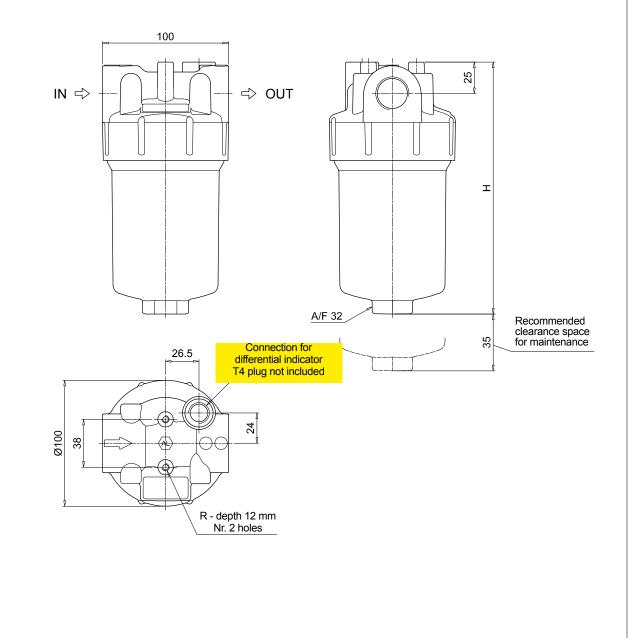
	COMPLETE FILTER										
Series and size	Configuration example :	LFEX060	В	Α		Α	6	A	10	Ν	P01
LFEX060 LFEX080 Filter featuring Marcan Filter Element		·									
Bypass valve											
S Without bypass											
B With bypass 3.5 bar											
Seals and treatments A NBR											
Connections											
A G 3/4"											
B G 1"											
C 3/4" NPT											
D 1" NPT											
E SAE 12 - 1 1/16" - 12 UN											
F SAE 16 - 1 5/16" - 12 UN											
Connection for clogging indicator											
1 Without											
6 With plugged connections											
Filtration rating											
A03 Inorganic microfiber 3 μm M25 Wire mesh	25 μm										
A06 Inorganic microfiber 6 µm M60 Wire mesh	<u>60 μm</u>										
A10 Inorganic microfiber 10 μm M90 Wire mesh	90 µm										
A16 Inorganic microfiber 16 µm P10 Resin impregnated p			Elem	ent ∆	p	_		Execu	ition		
A25 Inorganic microfiber 25 µm P25 Resin impregnated p	paper25 µm		N 8					P01	MP Fil	tri sta	indard
WA025 Water absorber inorganic microfiber 25 µm								Рхх	Custo	nized	

FILTER ELEMENT

Element series and size				Configuration example	: FEX060	A10	Α	Ν	P01
FEX060 FEX080 Filter Eleme	ent with M	ciean feature							
Filtration rating									
A03 Inorganic microfiber	3 µm M	25 Wire mesh	25 µm						
A06 Inorganic microfiber	6 µm M	60 Wire mesh	60 µm						
A10 Inorganic microfiber	10 µm M	90 Wire mesh	90 µm						
A16 Inorganic microfiber	l6μm Ρ1	0 Resin impregnate	ed paper10 µm						
A25 Inorganic microfiber 2	25 µm P2	5 Resin impregnate	ed paper25 µm						
WAODE Water abouthor inorga	nio mioro	ibor 05 um							
WA025 Water absorber inorga									
Seals and treatments									
A NBR									
				Elemen	t ∆p	Exec	ution		
				N 8 b	ar	P01		Filtri sta	
						Рхх	Cust	tomized	1

 CLOGGING INDICATORS
 See page 686

 DES
 Electrical differential indicator


 DVS
 Visual differential indicator

 PLUGS
 See page 706

 T4
 Differential indicator plug

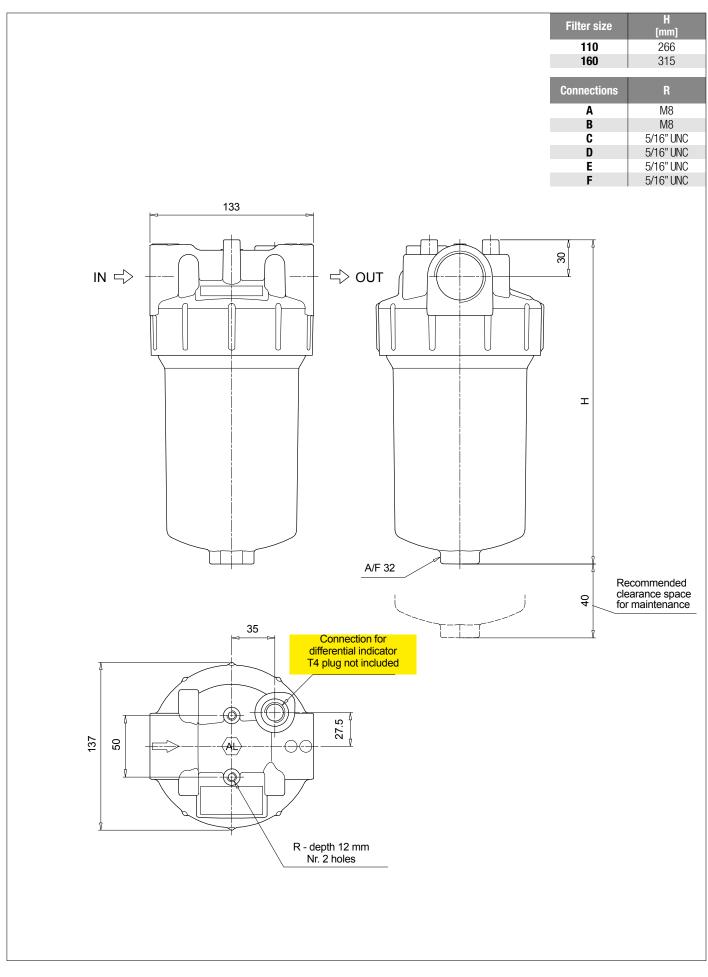
 Low & Medium Pressure filters
 312

Filter size	H [mm]
060	202
080	265
Connections	R
Α	M6
В	M6
C	1/4" UNC
D	1/4" UNC
E	1/4" UNC
F	1/4" UNC

LFEX LFEX110 - LFEX160

Designation & Ordering code

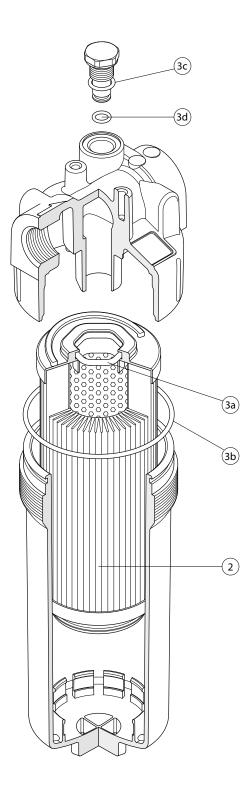
				COMPL	ETE FILTER										I
Serie	es and size			Configu	ration example : LFEX110	В	A		Α	(6	A10	Ν	P01	٦
LFE)	(110 LFEX160 Filte	er featuring	Filter Ele	ment											
Bypa S	ass valve Without hypoop														
B B	Without bypass With bypass 3.5 bar														
<u> </u>	with bypass 5.5 bai														
Seal	s and treatments														
Α	NBR														
	nections														
<u>A</u>	G 1"														
B	<u>G 1 1/4"</u>														
C D	<u>1" NPT</u> 1 1/4" NPT														
E	SAE 16 - 1 5/16" - 12														
F	SAE 20 - 1 5/8" - 12 L														
<u> </u>															
Con	nection for clogging indi	icator													
1	Without										1				
6	With plugged connection	ons													
	ation rating	0	MOE Wire moch	05											
	Inorganic microfiber Inorganic microfiber	<u>3 μm</u> 6 μm	M25 Wire mesh M60 Wire mesh	<u>25 μm</u> 60 μm											
	Inorganic microfiber	10 μm	M90 Wire mesh	<u> </u>											
	Inorganic microfiber	16 µm		gnated paper10 µm		El	ement	۸n			Eve	ution			
	Inorganic microfiber	25 µm		gnated paper25 µm			8 bar				P01		Filtri s	tandard	1
	•	·		<u> </u>							Pxx		omize		-
WAO	25 Water absorber in	organic mi	crofiber 25 µm												-


FILTER ELEMENT

Element series and size	Configuration example: FEX110 A	10 A N P01
FEX110 FEX160 Filter Element with Markan feature		
Filtration rating		
A03 Inorganic microfiber 3 µm M25 Wire mesh 25 µm		
A06 Inorganic microfiber 6 µm M60 Wire mesh 60 µm		
A10 Inorganic microfiber 10 µm M90 Wire mesh 90 µm		
A16 Inorganic microfiber 16 µm P10 Resin impregnated paper10 µm		
A25 Inorganic microfiber 25 μm P25 Resin impregnated paper25 μm		
WA025 Water absorber inorganic microfiber 25 µm		
Seals and treatments		
A NBR		
	Element Δp	Execution
	N 8 bar	P01 MP Filtri standard
		Pxx Customized
CLOGGING INDICATORS		See page 686
DES Electrical differential indicator		· -

DES Electrical differential indicator **DVS** Visual differential indicator

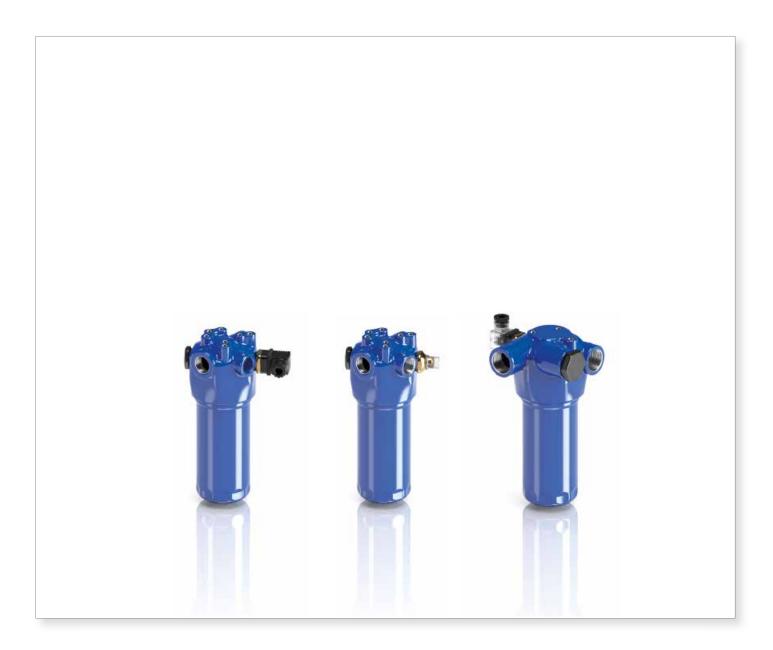
T4 Differential indicator plug



Order number for spare parts

	Q.ty: 1 pc.	Q.ty: 1 pc.	Q.ty: 1 pc.
Item:	2	3 (3a ÷ 3d)	4
Filter series	Filter element	Seal Kit code number NBR	Indicator connection plug NBR
LFEX 060-080	See order table	02050771	T4A
LFEX 110-160	table	02050772	אדי ו

MPFILTRI'



LMP 110-120-123 series

Maximum working pressure up to 8 MPa (80 bar) - Flow rate up to 175 l/min

LMP 110-120-123

Description

Technical data

GENERAL INFORMATION

Low & Medium Pressure filters

Maximum working pressure up to 8 MPa (80 bar) Flow rate up to 175 l/min

LMP110 is a range of versatile low pressure filter for transmission, protection of sensitive components in low pressure hydraulic systems and filtration of the coolant into the machine tools.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1", for a maximum return flow rate of 175 $\ensuremath{\mathsf{I/min}}$
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Visual, electrical and electronic differential clogging indicators
- Multiport and multifunction schemes, to meet any type of application.
- LMP112: 3/4" additional input port
- LMP116: 3/4" additional output port
- LMP118: 3/4" bypass port, to send the bypass flow to the reservoir instead of the system
- LMP119: 3/4" relief port, to relief the input pressure in the filter, protecting the components downstream the filter against back pressure caused by the pressure drop (cold starts)
- LMP120: connections placed in the same side
- LMP122: connections placed in the same side and 1" additional output port
- LMP123: 2 and 3 bar integrated relief valve

Common applications:

Delivery lines, in any low pressure industrial equipment or mobile machines

Filter housing materials

- Head: Aluminium
- Housing: Cataphoresis Painted steel
- Bypass valve: Brass Aluminium

Pressure

- Test pressure: 12 MPa (120 bar)
- Burst pressure:
- LMP 110: 29 MPa (290 bar) LMP 120/130: 38 MPa (380 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 8 MPa (80 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

∆p element type

- Microfibre filter elements series N W: 20 bar
- Wire mesh filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature From -25 °C to +110 °C

Note LMP MULTIPORT filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]				Volumes [dm ³]					
	Length 1				Length 1			4		
LMP 110-112-116-118-119	1.60	1.80	2.10	2.60	0.75	0.81	1.11	1.53		
LMP 120-122	1.90	2.10	2.40	2.90	0.75	0.81	1.11	1.53		
LMP 123	1.70	1.90	2.20	2.70	0.75	0.81	1.11	1.53		

GENERAL INFORMATION

FILTER ASSEMBLY SIZING

Flow rates [l/min]

								FI	
				Fil	ter element d	esign - N Ser	ies		
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	P10	P25
	1	40	42	65	69	85	163	117	120
LMP 110	2	49	57	83	83	101	163	136	138
	3	66	70	92	102	124	164	142	144
	4	86	102	118	124	144	165	148	149
	1	36	38	55	57	67	105	84	86
LMP 112	2	44	49	66	66	76	105	93	94
	3	56	58	71	77	87	106	96	97
	4	67	77	85	88	97	106	99	99
	1	36	38	54	56	64	96	79	80
LMP 116	2	43	49	63	64	72	96	86	87
	3	54	57	68	73	82	96	88	89
	4	65	73	79	82	89	96	91	91
	1	40	42	65	69	85	163	117	120
LMP 118	2	49	57	83	83	101	163	136	138
LMFTIO	3	66	70	92	102	124	164	142	144
	4	86	102	118	124	144	165	148	149
	1	40	43	66	70	87	172	121	125
LMP 120	2	50	58	85	85	104	172	142	144
LIVIP 120	3	67	71	94	105	129	173	149	151
	4	88	106	122	129	151	174	155	157
	1	39	42	64	67	81	146	109	111
LMP 122	2	49	56	80	80	96	146	124	126
	3	65	68	88	96	114	146	129	130
	4	82	97	110	115	131	147	134	135

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

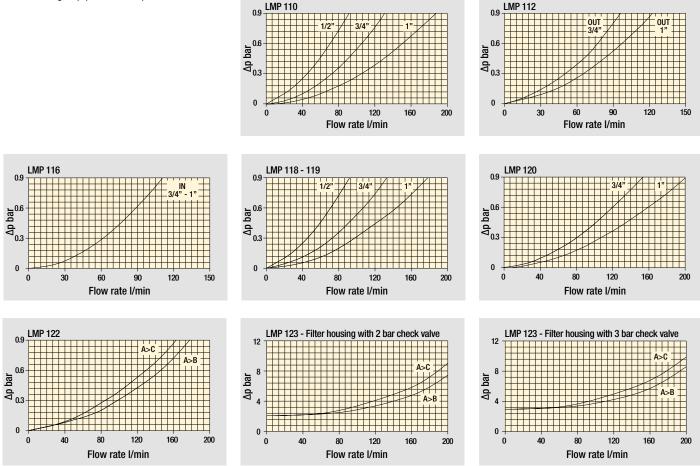
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

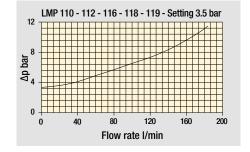
			Filter element design - N Series								
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	P10	P25		
	1	35	37	50	52	59	83	70	71		
LMP 123	2	41	46	58	58	65	83	76	76		
	3	51	53	62	65	72	83	77	78		
	4	59	65	70	72	78	83	79	79		

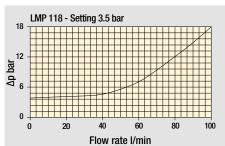
Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 2.7$ bar.

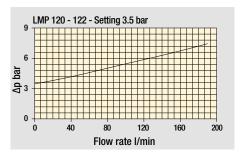
The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

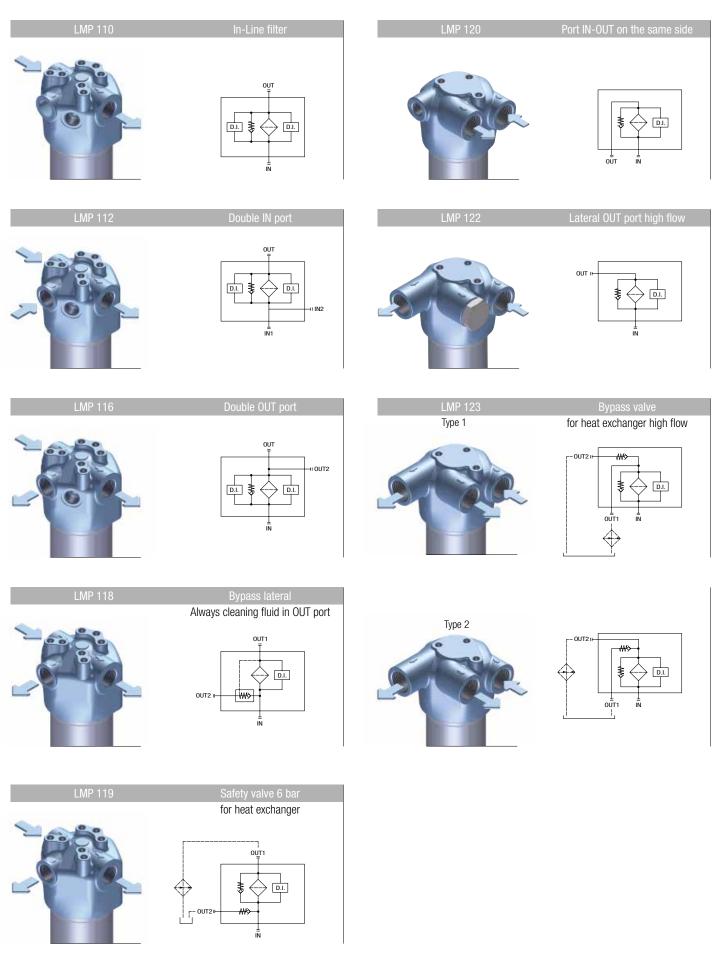
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.




Pressure drop


Filter housings Δp pressure drop

Bypass valve pressure drop



The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

GENERAL INFORMATION

Hydraulic symbols - Multiport styles

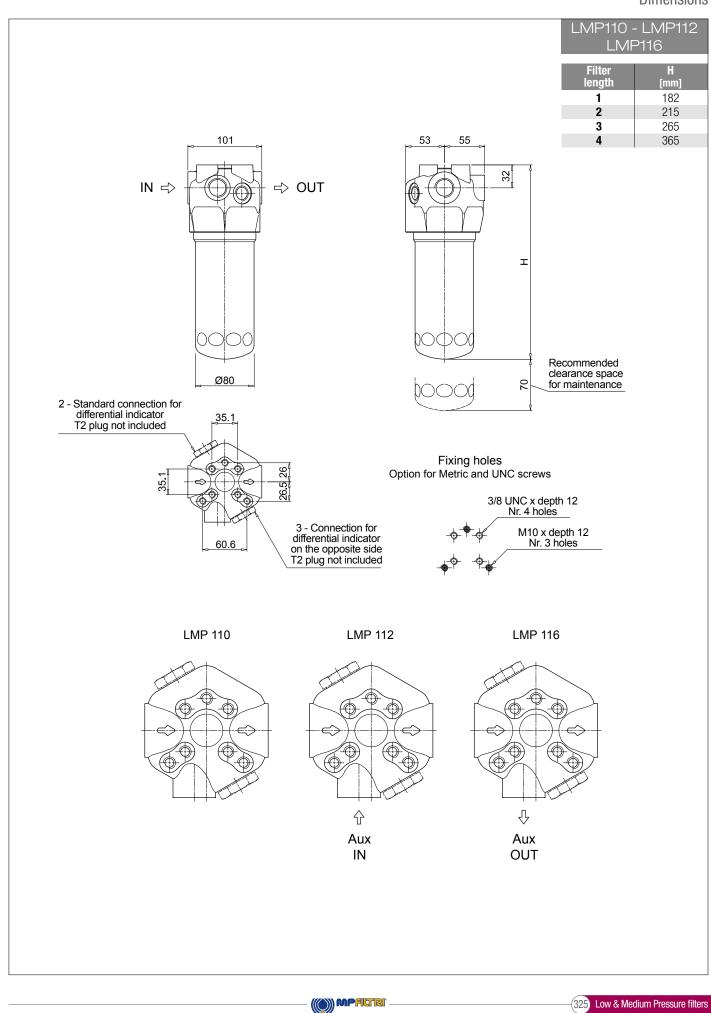
LMP LMP110 - LMP112 - LMP116

Designation & Ordering code

	COMPLETE	FILTER						
Series and size	Configuration example	e: LMP112 4	BA	A [) 1	A1	0	N P01
LMP110 LMP112 LMP116								
Length 1 2 3 4								
Bypass valve								
S Without bypass B With bypa	ss 3.5 bar							
Seals and treatments								
A NBR								
V FPM								
Connections	440 440							
A G 3/4" G 3/4"	112 - 116)							
B G 1" G 3/4"								
C 3/4" NPT 3/4" NPT								
D 1" NPT 3/4" NPT								
E SAE 12 - 1 1/16" - 12 UN SAE 12 - 1 1/16" - 12 U	JN							
F SAE 16 - 1 5/16" - 12 UN SAE 12 - 1 1/16" - 12 U	JN							
Connection for differential indicator								
1 Without 2 With standard connection								
3 With connection on the opposite side								
6 With two connections on both sides								
Filtration rating (filter media)								
A03 Inorganic microfiber 3 µm M25 Wire mesh	•							
A06 Inorganic microfiber 6 µm M60 Wire mesh								
A10 Inorganic microfiber 10 μm M90 Wire mesh								
	egnated paper 10 µm		Element ∆p			Execut		
A25 Inorganic microfiber 25 μm P25 Resin impre	egnated paper 25 µm		N 20 ba	·				standard
						Pxx (Customi	zed

	FILTEF	RELEMENT			
Element series and size		Configuration exa	imple: CU110	4 A10	A N PO
CU110					
Element length					
1 2 3 4					
Filtration rating (filter media)					
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25 µm				
A06 Inorganic microfiber 6 µm	M60 Wire mesh 60 µm				
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90 µm				
A16 Inorganic microfiber 16 µm	P10 Resin impregnated paper 10 µm				
A25 Inorganic microfiber 25 µm	P25 Resin impregnated paper 25 µm				
i					
	Sea	Is and treatments	Element ∆p	Exe	cution
	Α	NBR	N 20 bar	P01	
	V	FPM		Рхх	Customized

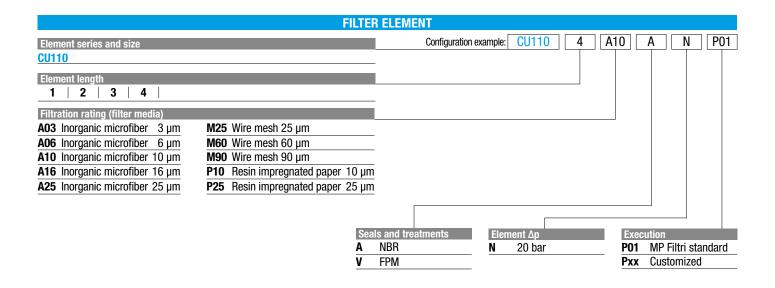
	CLOGGING INDICATORS							
DEA	Electrical differential indicator	DTA	Electronic differential indicator					
DEM	Electrical differential indicator	DVA	Visual differential indicator					
DLA	Electrical / visual differential indicator	DVM	Visual differential indicator					
DIF	Electrical / visual differential indicator							


T2 Differential indicator plug (not included)

PLUGS

Dimensions

(325) Low & Medium Pressure filters

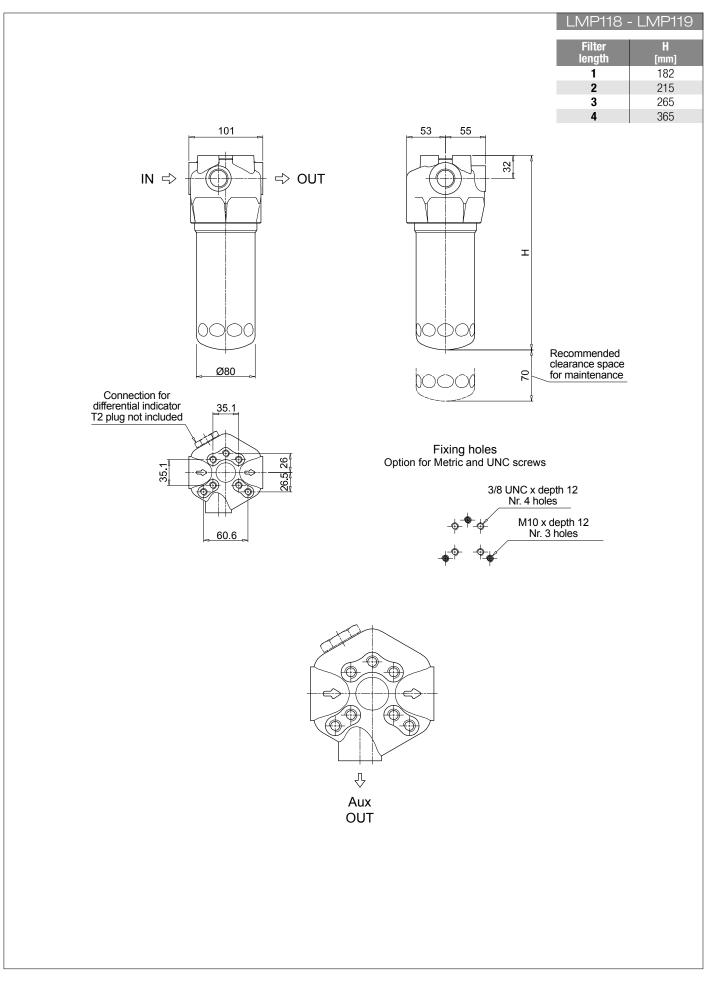


Designation & Ordering code

MULTIPORT

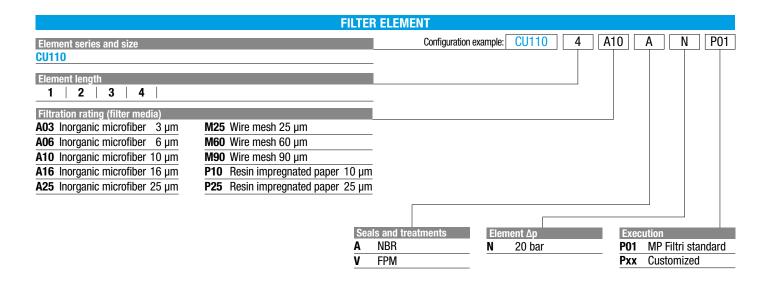
LMP118 - LMP119

		COMPL	ete filter									
Series and size		Configuration ex	ample: LMP118	4	B		A	D	A	10	N	P01
LMP118 LMP119												
Length												
1 2 3 4												
Bypass valve												
B With bypass 3.5 bar												
Seals and treatments												
A NBR]					
V FPM												
Connections	Aux OUT											
A G 3/4"	G 3/4"											
B G 1"	G 3/4"											
C 3/4" NPT	3/4" NPT											
D 1" NPT	3/4" NPT											
E SAE 12 - 1 1/16" - 12 UN	SAE 12 - 1 1/16" - 12 UN											
F SAE 16 - 1 5/16" - 12 UN	SAE 12 - 1 1/16" - 12 UN											
Connection for differential indic	ator											
1 Without												
2 With standard connection												
Filtration rating (filter media) A03 Inorganic microfiber 3 µ	m M25 Wire mesh 25 µm]		
A06 Inorganic microfiber 6 µ												
A10 Inorganic microfiber 10 µ												
A16 Inorganic microfiber 16 µ					Eleme	ent ∆p	1		Execu			
A25 Inorganic microfiber 25 µ					N	20 ba	r		 -	MP Filt		dard
									Рхх	Custon	nized	


	See page 686			
DEA	Electrical differential indicator	DTA	Electronic differential indicator	
DEM	Electrical differential indicator	DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator			

T2 Differential indicator plug (not included)

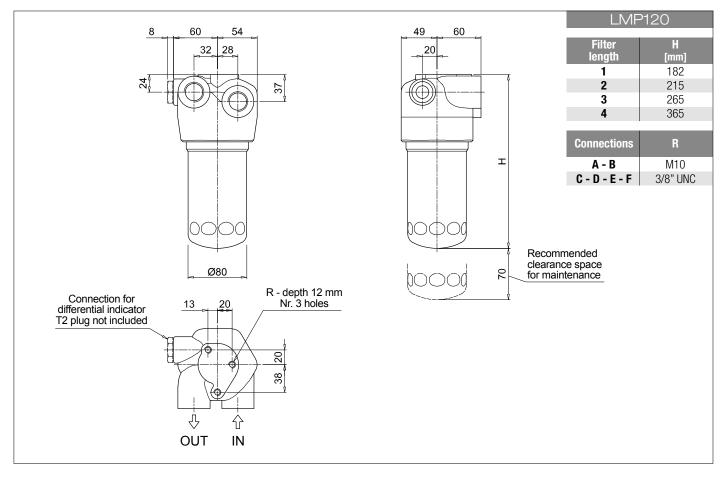
PLUGS

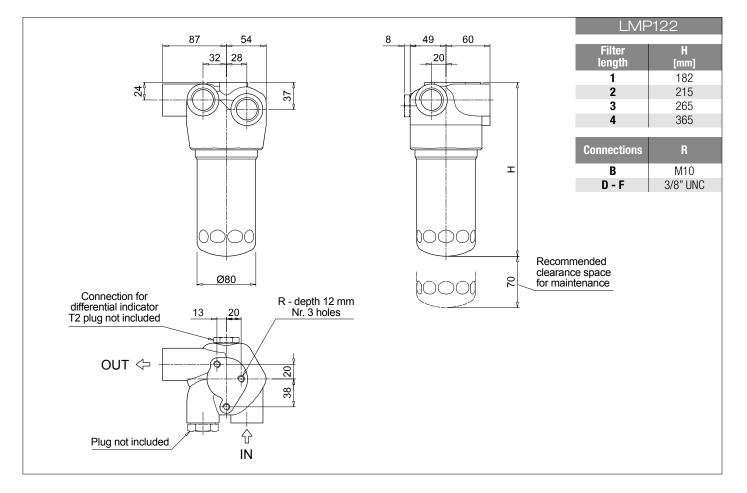


LMP LMP120 - LMP122

Designation & Ordering code

	COMPLETE FILTER		
Series and size	Configuration example: LMP120) 4 B A I	D 1 A10 N P01
LMP120 LMP122			
Length			
1 2 3 4			
Bypass valve			
S Without bypass B With bypas	ss 3.5 bar		
Seals and treatments			
A NBR			
V FPM			
0			
Connections LMP120 A G 3/4") LMP122		
B G 1" •	•		
C 3/4" NPT •			
D 1"NPT •	•		
E SAE 12 - 1 1/16" - 12 UN •			
F SAE 16 - 1 5/16" - 12 UN •	•		
Connection for differential indicator			
1 Without			
2 With standard connection			
Filtration rating (filter media)			
A03 Inorganic microfiber 3 μm M25 Wire mesh 2			
A06 Inorganic microfiber 6 µm M60 Wire mesh 6			
A10 Inorganic microfiber 10 μmM90 Wire mesh 9A16 Inorganic microfiber 16 μmP10 Resin impre	•	Element An	Eucoution
	gnated paper 10 μm gnated paper 25 μm	Element ∆p N 20 bar	Execution P01 MP Filtri standard
	giated paper 23 µm	<u>11 20 Jul</u>	Pxx Customized




CLO	See page 686	
DEA Electrical differential indicator	DTA Electronic differential indicator	
DEM Electrical differential indicator	DVA Visual differential indicator	
DLA Electrical / visual differential indicator	DVM Visual differential indicator	
DLE Electrical / visual differential indicator		

T2 Differential indicator plug (not included)

PLUGS

Designation & Ordering code

MULTIPORT

LMP123

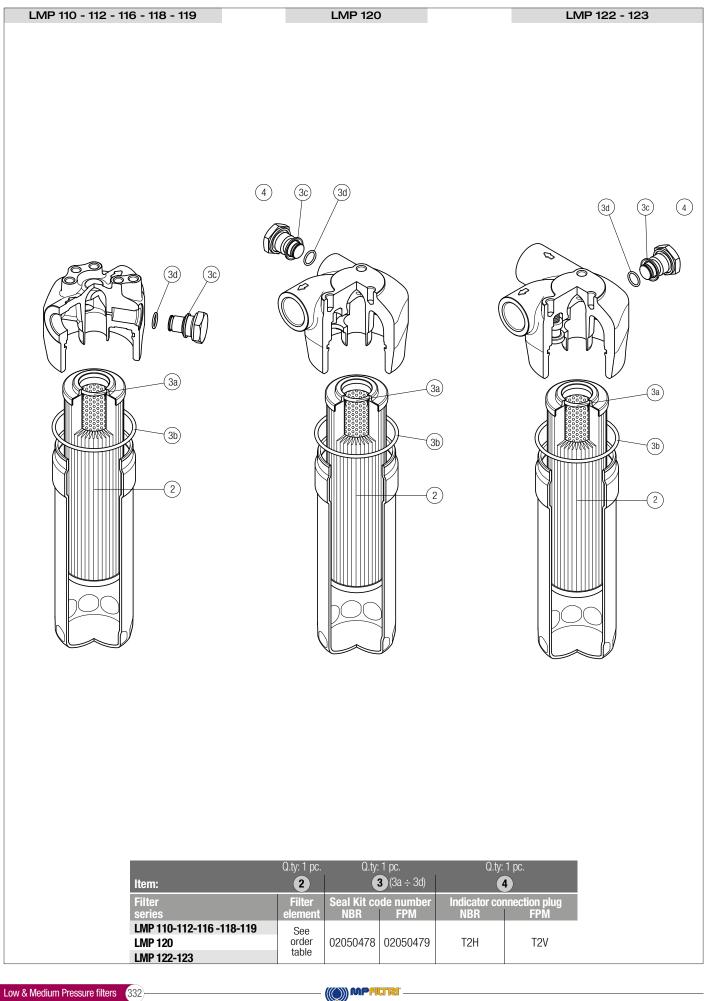
			COMPL	ETE FILTER							
Series and size			Configuration ex	cample: LMP123	4 R	Α] [F	1	A10	N	P01
LMP123											
Length											
1 2 3	3 4										
Valves	Bypass	OUT to cooler	Check valve								
C	_	front	2 bar								
D	without		3 bar								
G	_	side	2 bar								
H			3 bar								
M N		front	2 bar 3 bar								
Q	With bypass 3.5 bar		2 bar								
R	5.5 bai	side	3 bar								
<u></u>			0 bui								
Seals and treatm	ents										
A NBR											
V FPM											
Connections											
B G 1"											
F SAE 16 - 15	5/16" - 12 UN										
	ifferential indicator										
1 Without											
2 With standa	rd connection										
Filtration rating (filtor modio)										
A03 Inorganic m		M25 Wire mesh 25	ium								
A06 Inorganic m		M60 Wire mesh 60									
A10 Inorganic m		M90 Wire mesh 90			Eleme	ent ∧p	_	Exec	ution		
A16 Inorganic m		P10 Resin impregi			N	20 bar		P01		ri standa	ard
A25 Inorganic m	icrofiber 25 µm	P25 Resin impregi	nated paper 25 µm					 Рхх	Custon	nized	

	FILTEF	R ELEMENT		
Element series and size		Configuration e	xample: CU110	4 A10 A N P01
CU110				
Element length				
1 2 3 4				
Filtration rating (filter media)				
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25 µm			
A06 Inorganic microfiber 6 µm	M60 Wire mesh 60 µm			
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90 µm			
A16 Inorganic microfiber 16 µm	P10 Resin impregnated paper 10 µm			
A25 Inorganic microfiber 25 µm	P25 Resin impregnated paper 25 µm			
	Sea	Is and treatments	Element Ap	Execution
	A	NBR	N 20 bar	P01 MP Filtri standard
	V	FPM		Pxx Customized

	CLOGGING INDICATORS				
DEA	Electrical differential indicator	DTA	Electronic differential indicator		
DEM	Electrical differential indicator	DVA	Visual differential indicator		
DLA	Electrical / visual differential indicator	DVM	Visual differential indicator		
DIF	Electrical / visual differential indicator				

T2 Differential indicator plug (not included)

PLUGS


LMP123 LMP

MP 110-120 SPARE PARTS MULTIPORT

Order number for spare parts

LMP 210-211

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 365 l/min

$_MP 210-211$ general information

Description

Low & Medium Pressure filters

Maximum working pressure up to 6 MPa (60 bar) Flow rate up to 365 l/min

LMP210 is a range of versatile low pressure filter for transmission, protection of sensitive components in low pressure hydraulic systems and filtration of the coolant into the machine tools.

They are also suitable for the off-line filtration of small reservoirs. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Flanged connections up to 1 1/2", for a maximum flow rate of 365 l/min (LMP210)
- Female threaded connections up to 1 1/2", for a maximum return flow rate of 365 I/min (LMP211)
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Visual, electrical and electronic differential clogging indicators

Common applications:

Delivery lines, in any low pressure industrial equipment or mobile machines

Technical data

Filter housing materials

- Head: Aluminium
- Bowl: Cataphoretic painted steel
- Bypass valve: AISI 304 Polyamide

Pressure

- Test pressure: 9 MPa (90 bar)
- Burst pressure: 21 MPa (210 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 6 MPa (60 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) $\pm 10\%$
- Other opening pressures on request.

∆p element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature From -25 °C to +110 °C

Connections Inlet/Outlet In-Line

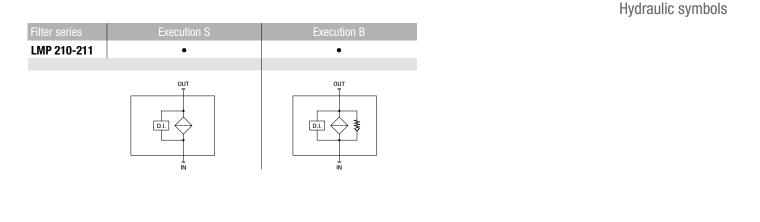
Note LMP 210 - 211 filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

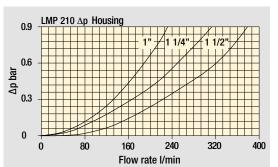
Filter series		Weights [kg]			Volumes [dm ³]				
	Length				Length				
LMP 210-211		3.10	4.80	6.40		1.60	2.10	2.80	

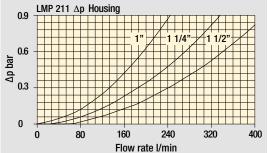
FILTER ASSEMBLY SIZING

Flow rates [l/min]

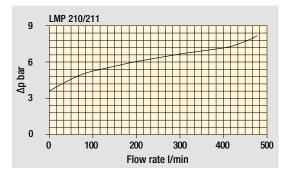

			Filter element design - N Series								
Filter series	Length	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25
	1	106	130	190	200	221	286	287	287	261	265
LMP 210	2	153	175	220	237	249	288	289	290	265	269
	3	204	214	248	260	265	289	290	291	277	281
	1	118	149	227	240	269	358	359	360	324	330
LMP 211	2	178	207	268	292	307	361	362	363	329	335
	3	247	260	306	323	329	362	363	364	345	351

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.


The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.



Pressure drop Filter housings Δp pressure drop

Bypass valve pressure drop

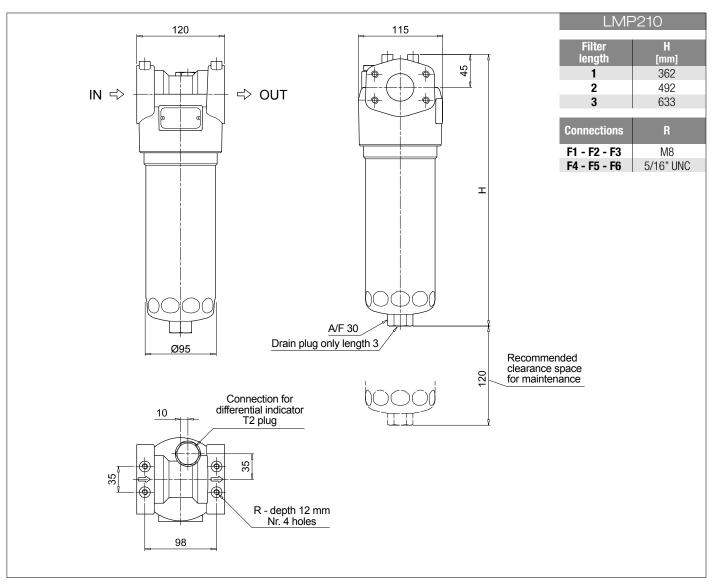
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Designation & Ordering code

MP 210

	COMPLETE FILTER								
Series and size	Configuration example: LMP210	3	B	Α	F1	A1	0	NF	P01
LMP210									
Length									
Powerse weber									
Bypass valve S Without bypass B With bypass 3.5 bar									
S Without bypass B With bypass 3.5 bai									
Seals and treatments									
A NBR									
V FPM									
Connections									
F1 1" SAE 3000 psi/M									
F2 1 1/4" SAE 3000 psi/M									
F3 1 1/2" SAE 3000 psi/M									
F4 1" SAE 3000 psi/UNC									
F5 1 1/4" SAE 3000 psi/UNC									
F6 1 1/2" SAE 3000 psi/UNC									
Filtration rating (filter media)									
A03 Inorganic microfiber 3 µm M25 Wire mesh 25 µm									
A06 Inorganic microfiber 6 µm M60 Wire mesh 60 µm									
A10 Inorganic microfiber 10 μm M90 Wire mesh 90 μm]	
A16 Inorganic microfiber 16 μm P10 Resin impregnated pap	er 10 µm	Iement ∆p	1	_		xecuti	ion		
A25 Inorganic microfiber 25 µm P25 Resin impregnated pap	—	20 ba	ır		P	01 N	/ P Filtr	i standa	ard
	=				P	xx C	Custom	ized	

WA025 Water absorber inorganic microfiber 25 µm


	FILTE	R ELEMENT				
Element series and size CU210		Configuration	example: CU210	3 A10	A [N P01
Element length 1 2 3						
Filtration rating (filter media) A03 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm	M25 Wire mesh 25 μm M60 Wire mesh 60 μm					
A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm A25 Inorganic microfiber 25 μm	M90 Wire mesh 90 μm P10 Resin impregnated paper 10 μm P25 Resin impregnated paper 25 μm					
WA025 Water absorber inorganic m		<u>.</u>				
	Sec	ils and treatments	Element Δp	Б	xecution	
	A V	NBR FPM	N 20 bar	P		ri standard iized

	C	LOGGING INDICAT	DRS	See page 686
DEA	Electrical differential indicator	DTA	Electronic differential indicator	
DEM	Electrical differential indicator	DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	DVN	Visual differential indicator	
DLE	Electrical / visual differential indicator			

T2 Differential indicator plug

PLUGS

LMP 210

Designation & Ordering code

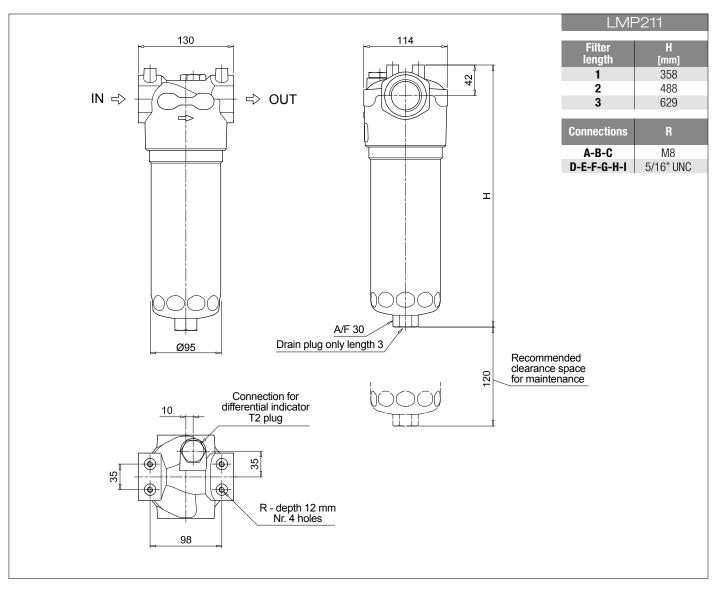
||

⊃ 211

	COMPLETE FILTER					
Series and size	Configuration example: LMP2	211 3 B	A D	6	A10	N P01
LMP211	-					
Length						
1 2 3						
Bypass valve						
S Without bypass B With bypas	ss 3.5 bar					
Seals and treatments A NBR						
V FPM						
Connections						
A G 1"						
B G 1 1/4"						
C G 1 1/2"						
D 1"NPT						
E 1 1/4" NPT						
F 1 1/2" NPT						
G SAE 16 - 1 5/16" - 12 UN						
H SAE 20 - 1 5/8" - 12 UN						
SAE 24 - 1 7/8" - 12 UN						
Connection for differential indicator						
6 With plugged connection						
Filtration rating (filter media)						
A03 Inorganic microfiber 3 µm M25 Wire mesh 2	25 μm					
A06 Inorganic microfiber 6 µm M60 Wire mesh 6	30 μm					
A10 Inorganic microfiber 10 µm M90 Wire mesh 9		Element <i>L</i>	\p	Exe	cution	
· · · · · ·	gnated paper 10 µm	N 20		P01		ri standard
A25 Inorganic microfiber 25 μm P25 Resin impre	gnated paper 25 µm			Рхх	Custon	nized

WA025 Water absorber inorganic microfiber 25 µm

	FILTE	R ELEMENT			
Element series and size		Configuration e	example: CU210	3 A10	A N P01
CU210					
Element length		1			
1 2 3					
Filtration rating (filter media)		-			
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25 µm			,	
A06 Inorganic microfiber 6 µm	M60 Wire mesh 60 μm	-			
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90 μm	-			
A16 Inorganic microfiber 16 µm	P10 Resin impregnated paper 10 μm				
A25 Inorganic microfiber 25 µm	P25 Resin impregnated paper 25 µm				
WA025 Water absorber inorganic r	nicrofiber 25 µm				
	Sea	Is and treatments	Element ∆p	Ever	ution
	A	NBR	N 20 bar	P01	MP Filtri standard
	V	FPM		Pxx	Customized


	CLOGGI	NG INDICATO	IRS	See page 686
DEA	Electrical differential indicator	DTA	Electronic differential indicator	
DEM	Electrical differential indicator	DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	DVM	Visual differential indicator	
DIF	Electrical / visual differential indicator			

T2 Differential indicator plug

PLUGS

LMP 211

_MP 210-211 spare parts

Order number for spare parts

	LMP 210		LMP 211	
		 4 30 31 32 		
Item: Filter series		Q.ty: 1 pc. 3 (3a ÷ 3d) eal Kit code number IBR FPM	Q.ty: 1 pc. Indicator connection plug NBR FPM	
	See	050435 02050436	T2H T2V	_

LMP 400-401 & 430-431 series

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 780 l/min

LMP 400-401 & 430-431

Description

Technical data

Low & Medium Pressure filters

Maximum working pressure up to 6 MPa (60 bar) Flow rate up to 780 l/min

LMP400 is a range of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 2" and flanged connections up to 2 1/2", for a maximum flow rate of 780 l/min
- In line or 90° connections, to meet any type of application
- Base-mounting design also available, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work - Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Bypass valve: Steel

Pressure LMP 400 length 2 -3 - 4

- Working pressure: 6 MPa (60 bar)
- Test pressure: 9 MPa (90 bar)
- Burst pressure: 21 MPa (210 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 6 MPa (60 bar)

Pressure LMP 400 length 5 - 6

- Working pressure: 5 MPa (50 bar)
- Test pressure: 7.5 MPa (75 bar)
- Burst pressure: 15 MPa (150 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 5 MPa (50 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) $\pm 10\%$
- Other opening pressures on request.

∆p element type

- Microfibre filter elements series N W: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature From -25 °C to +110 °C

Connections LMP 400 - 430: In-line Inlet/Outlet LMP 401 - 431: 90° Inlet/Outlet

Note LMP 400 filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

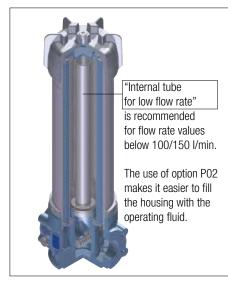
Filter series		Weights [kg]						Volumes [dm ³]				
	Length						Length					6
LMP 400-401 & 430-431		7.20	8.10	8.80	11.90	14.40		3.50	5.00	6.50	9.50	13.50

_MP 400-401 & 430-431

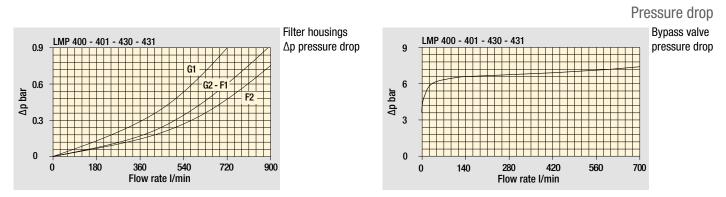
FILTER ASSEMBLY SIZING

Flow rates [l/min]

				Fil	ter element d	esign - N Ser	ies		
Filter series	Length	A03	A06	A10	A16	A25	M25 M60	P10	P25
							M90		
	2	205	244	370	411	515	720	524	556
	3	280	333	474	515	602	760	637	660
LMP 400	4	347	400	535	564	637	769	660	688
	5	459	501	610	660	717	781	700	721
	6	504	575	676	689	728	783	708	727
	2	200	236	347	382	468	628	475	501
	3	268	315	434	468	537	659	565	582
LMP 401	4	328	373	484	507	565	665	582	603
	5	423	456	544	582	626	674	613	629
	6	459	516	594	604	634	676	619	633
LMP 430	5	459	501	610	660	717	781	700	721
LIVIP 430	6	504	575	676	689	728	783	708	727
	5	423	456	544	582	626	674	613	629
LMP 431	6	459	516	594	604	634	676	619	633


Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

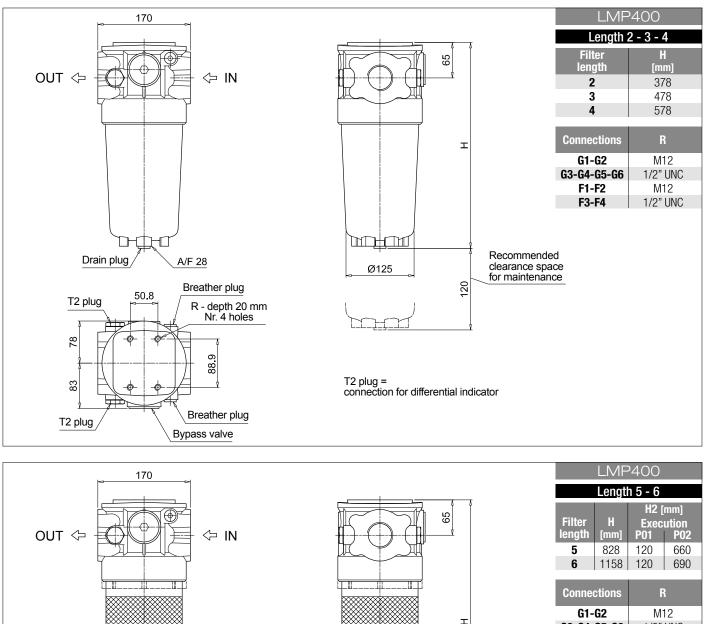
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

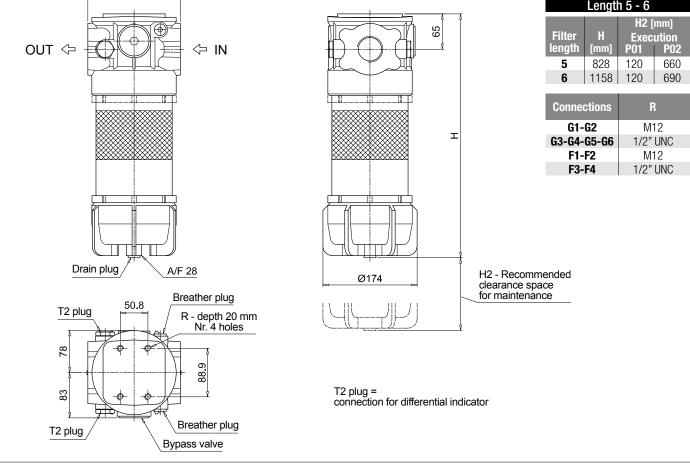
LMP 430-431: execution P02

Filter series		
FILLET SELLES	Execution S	Execution B
LMP 400-401 & 430-431	•	•
		OUT D.L.

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. △p varies proportionally with density.

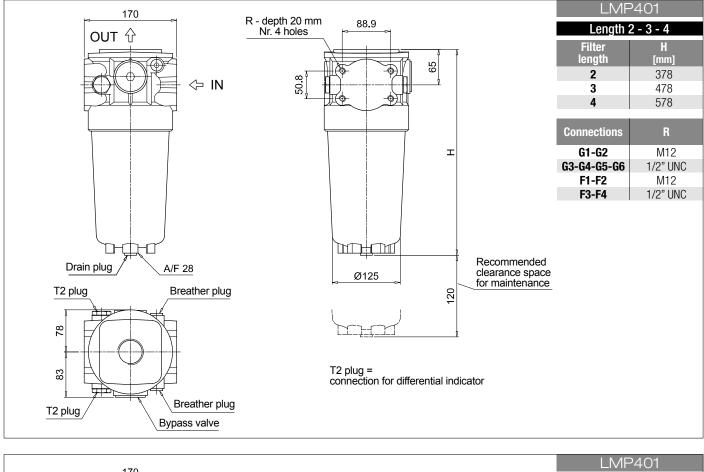
Hydraulic symbols

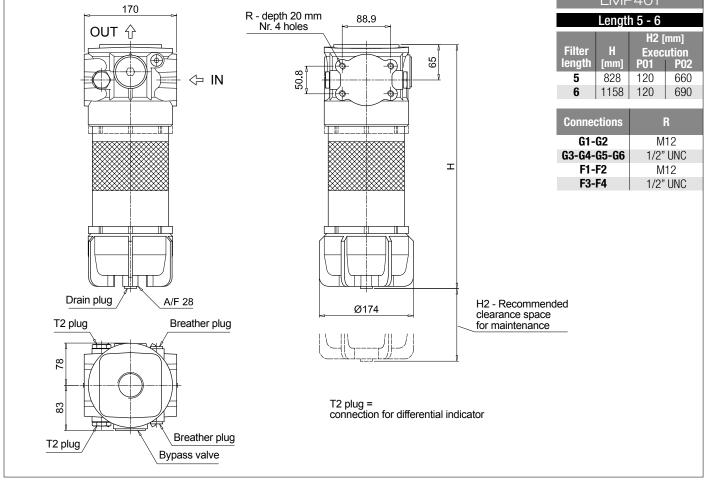

LMP 400-401


Designation & Ordering code

		COMPLETE FILTER						
Series and size		Configuration example:		3	B	A G	1 A10	N P01
LMP400 LMP401								
Length								
2 3 4 5 6								
Bypass valve								
S Without bypass	B With bypass 3.5 bar				J			
	Filtration	rating						
Seals and treatments	Axx Mxx							
A NBR	• •	•						
V FPM W NBR compatible with fluids HFA	● ● -HEB-HEC. ● ●	•						
Connections	E4 01 04E 0000 mei/M							
G1 G 1 1/2" G2 G 2"	F1 2" SAE 3000 psi/M F2 2 1/2" SAE 3000 psi/M							
G3 1 1/2" NPT	F3 2" SAE 3000 psi/UNC							
G4 2" NPT	F4 2 1/2" SAE 3000 psi/UN	<u>с</u>						
G5 SAE 24 - 1 7/8" - 12 UN		<u> </u>						
G6 SAE 32 - 2 1/2" - 12 UN								
Filtration rating (filter media)								
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25 µm							
A06 Inorganic microfiber 6 µm	M60 Wire mesh 60 µm							
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90 µm							
A16 Inorganic microfiber 16 µm	P10 Resin impregnated paper	<u> </u>						
A25 Inorganic microfiber 25 µm	P25 Resin impregnated paper	· 25 μm						
WA025 Water absorber inorganic r	nicrofiber 25 µm							
							Fi	ter length
	Ele		Execution 201 MP Filtri	etandard			2 3	4 5 6
	<u>n</u>		PO2 Maintenar		e bottom	of the hou	Isina	• •
		-	Pxx Customiz			01 010 1100	lonig	
		FILTER ELEMENT	.					
Element series and size		Со	nfiguration examp	le: CU40	0	3 A1	0 A	N P01
<u>CU400</u>								
Element length								
2 3 4 5 6								
Filtration rating (filter media)								
A03 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm	M25 Wire mesh 25 μm M60 Wire mesh 60 μm							
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90 µm							
A16 Inorganic microfiber 16 μm	P10 Resin impregnated paper	10 um						
A25 Inorganic microfiber 25 μm	P25 Resin impregnated paper							
WA025 Water absorber inorganic r	microfiber 25 um							
Water absorber morganie i	·	rating						
Seals	Filtration Axx Mxx	Pxx						
A NBR	• •	•			r			
V FPM	• •	•				_	Furnation	
W NBR compatible with fluids HF/	A-HFB-HFC • •	-	N	lement ∆p 20 ba	r		Execution P01 MP F	iltri standard
			<u>n</u>	20.00	•			omized
DEA Electrical differential indicator		OGGING INDICATO DTA	RS Electronic diff	ferential in	dicator		S	e page 686
DEM Electrical differential indicator			Visual differen					
DLA Electrical / visual differential i			Visual differen					
DLE Electrical / visual differential i								

T2 Differential indicator plug


PLUGS

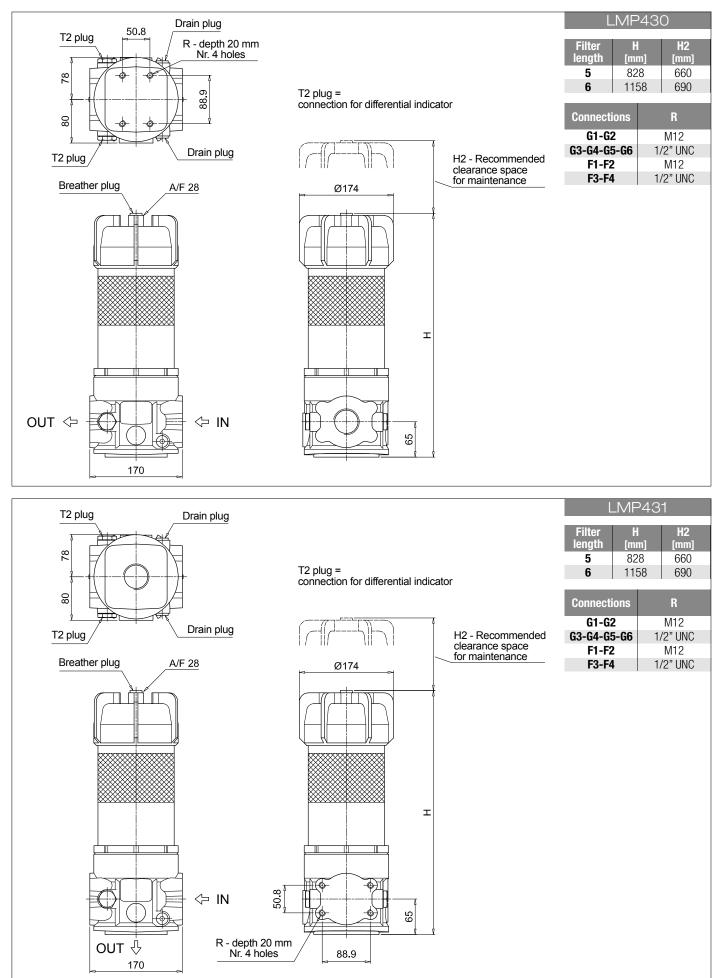


LMP 400-401

LMP 430-431

Designation & Ordering code

	COMPLETE FILTER																
Seri	es and size				Con	figuration example	: LMP431	5		В	A		G1	A1	0	Ν	P01
LMP	430 LMP431					· · ·								, <u> </u>		Τ	
Leng	yth																
5	6					_											
Вура	ass valve																
S	Without bypass	В	With bypass	: 3.5 bar						_							
				Filtrat	tion rating												
	s and treatments			Axx I	Mxx Pxx												
A V	NBR FPM			•	•••	_											
w	NBR compatible with fluids HFA			•	•••	-											
			110	•	• -	_											
Con	nections																
<u>G1</u>	G 1 1/2"	F1	2" SAE 3000			_											
<u>G2</u>	G 2"	F2	2 1/2" SAE 3			_											
<u>G3</u>	1 1/2" NPT	F3	2" SAE 3000			_											
G4	2" NPT	F4	2 1/2" SAE 3	iuuu psi	UNC	_											
G5	SAE 24 - 1 7/8" - 12 UN																
G6	SAE 32 - 2 1/2" - 12 UN																
Filtr	ation rating (filter media)																
A03	Inorganic microfiber 3 µm	M25	Wire mesh 25	5μm													
-	Inorganic microfiber 6 µm	M60	Wire mesh 60) µm													
	Inorganic microfiber 10 µm		Wire mesh 90			_											
	Inorganic microfiber 16 µm		Resin impreg	•													
A25	Inorganic microfiber 25 µm	P25	Resin impreg	nated pa	aper 25 µ	<u>n</u>	Elemer				ecut						
WAN	25 Water absorber inorganic n	nicrofił	per 25 um				<u>N 2</u>	20 bar		PO				ndard		w flo	u rota
		101011	501 20 µm							PO					IUT IO	w fio	w rate
										PX	χU	JUSTO	nized				

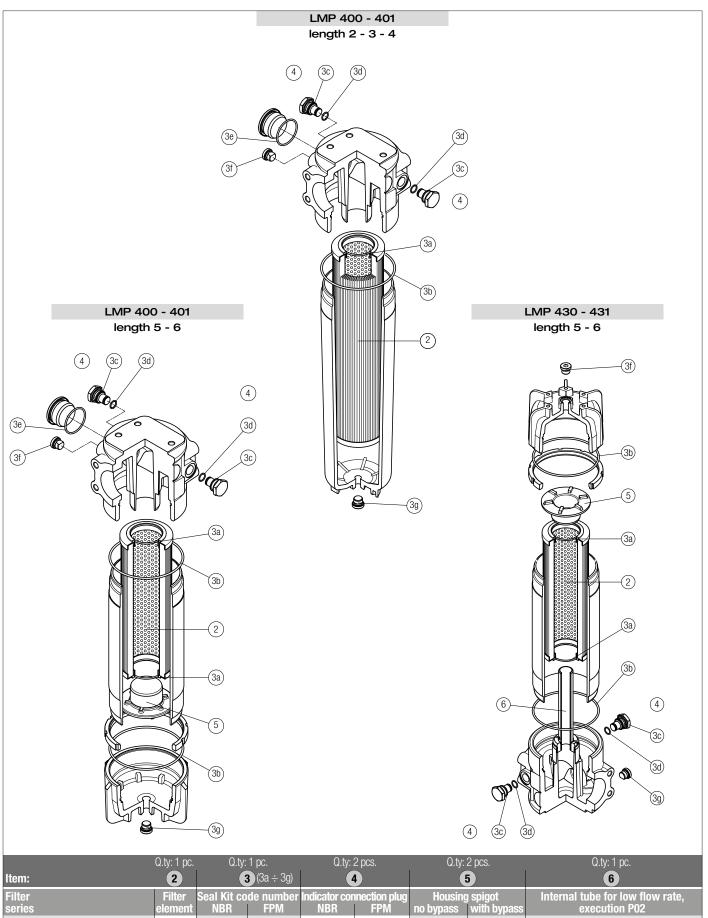

	FILTER ELEN	IENT	
Element series and size		Configuration example: CU400 5	A10 A N P01
CU400			
Element length			
5 6			
Filtration rating (filter media)			
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25 µm		
A06 Inorganic microfiber 6 µm	M60 Wire mesh 60 µm		
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90 µm		
A16 Inorganic microfiber 16 µm	P10 Resin impregnated paper 10 µm		
A25 Inorganic microfiber 25 µm	P25 Resin impregnated paper 25 µm		
WA025 Water absorber inorganic	microfiber 25 µm		
ī	Filtration rating		
Seals	Axx Mxx Pxx		
A NBR	• • •		
V FPM	• • •		
W NBR compatible with fluids HF	FA-HFB-HFC • • -	Element Ap	Execution
		N 20 bar	P01 MP Filtri standard
			Pxx Customized

	CLOGGING INDICATORS						
DEA	Electrical differential indicator	DTA	Electronic differential indicator				
DEM	Electrical differential indicator	DVA	Visual differential indicator				
DLA	Electrical / visual differential indicator	DVN	Visual differential indicator				
DLE	Electrical / visual differential indicator						

T2 Differential indicator plug

PLUGS

See page 706



LMP 400-401 & 430-431

SPARE PARTS

Order number for spare parts

See

order

table

LMP 400-401 length 2-3-4

LMP 400-401 length 5-6

LMP 430-431 length 5-6

T2V

01044108

01044108 02001414 Length 5: 02025041 Length 6: 02025042

T2H

02050391 02050392

02050393 02050394

02050393 02050394

LMP 950-951 series

Maximum working pressure up to 3 MPa (30 bar) - Flow rate up to 2400 l/min

LMP 950-951 GENERAL INFORMATION

Description

Technical data

Low & Medium Pressure filters

Maximum working pressure up to 3 MPa (30 bar) Flow rate up to 2400 l/min

LMP950 is a range of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Flanged connections up to 4", for a maximum flow rate of 2400 l/min
- In line or 90° connections, to meet any type of application
- Base-mounting design, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems
- Lubrication systems

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Bypass valve: Anodized Aluminium

Pressure

- Test pressure: 4,5 MPa (45 bar)
- Burst pressure: 12 MPa (120 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 3 MPa (30 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) $\pm 10\%$
- Other opening pressures on request.

∆p element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature From -25 °C to +110 °C

Connections LMP 950: In-line Inlet/Outlet LMP 951: 90° Inlet/Outlet

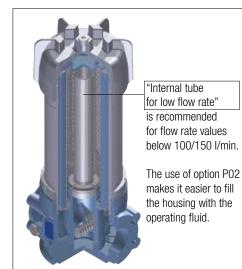
Note LMP 950 - 951 filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]	Volumes [dm ³]
	Length 2 3	Length 2 3
LMP 950-951	25.1 33.5	15 28

FILTER ASSEMBLY SIZING

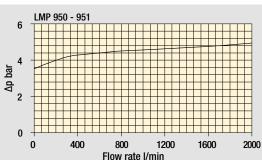
Flow rates [l/min]


			Filter element design - N Series							
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90			
	2	613	756	953	1219	1515	2170			
LMP 950	3	1148	1219	1502	1713	1808	2293			
LMP 951	2	635	789	1007	1308	1649	2420			
LIVIF 991	3	1226	1308	1634	1881	1993	2566			

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

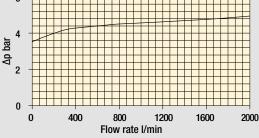
The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Execution P02

Hydraulic symbols Filter series LMP 950-951 • OU. оит D.I. D.I.


I MP 950 - 951 - F1 - 3 0.6 LMP 950 0.4 0.4 ∆p bar Δp bar 951 F1 0.2 0.2 0 0 100 350 700 1050 1400 1750 Flow rate I/min

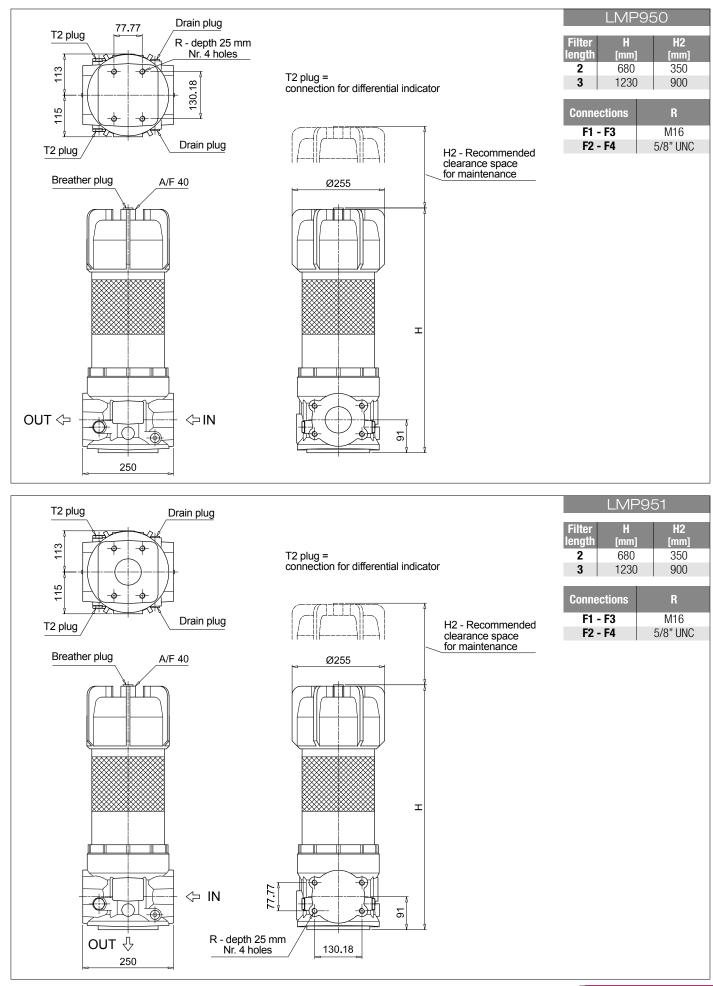
LMP 950 - 951 - F3 0.6 I MP 950 MP 95 F3 -100 500 1000 1500 2000 2500 Flow rate I/min

Pressure drop Filter housings ∆p pressure drop

Bypass valve pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

LMP 950-951


Designation & Ordering code

	COMPLETE FILTER
Series and size	Configuration example: LMP951 2 B A F2 A10 N P01
LMP950 LMP951	
Length	
2 3	
Bypass valve	
S Without bypass B With bypass 3.5 ba	ar
Seals and treatments	
A NBR	
V FPM	
Connections	
F1 3" SAE 3000 psi/M	
F2 3" SAE 3000 psi/UNC	
F3 4" SAE 3000 psi/M	
F4 4" SAE 3000 psi/UNC	
Filtration rating (filter media)	
A03 Inorganic microfiber 3 μm M25 Wire mesh 25 μm	
A06 Inorganic microfiber 6 µm M60 Wire mesh 60 µm	
A10 Inorganic microfiber 10 μm M90 Wire mesh 90 μm	
A16 Inorganic microfiber 16 µm	
A25 Inorganic microfiber 25 µm	
WA025 Water absorber inorganic microfiber 25 µm	
WACES Water absorber morganic micronber 25 pm	Element ∆p Execution
	N 20 bar P01 MP Filtri standard
	P02 With internal tube for low flow rate
	Pxx Customized

FILTER ELEMENT								
Element series and size		Configuration example:	CU950	2 A1	0	Α	Ν	P01
CU950								
Element length								
2 3								
Filtration rating (filter media)								
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25 µm							
A06 Inorganic microfiber 6 µm	M60 Wire mesh 60 µm							
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90 µm							
A16 Inorganic microfiber 16 µm								
A25 Inorganic microfiber 25 µm								
WA025 Water absorber inorganic r	nicrofiber 25 µm							
Seals								
A NBR						-		
V FPM								
		Eleme			Execu			
		N	20 bar			MP Filt		dard
					Ρχχ	Custom	nized	

	CLOGGING INDICATORS										
DEA	Electrical differential indicator		DTA	Electronic differentia							
DEM	Electrical differential indicator		DVA	Visual differential in							
DLA	Electrical / visual differential indi	icator	DVM	Visual differential in							
DLE	Electrical / visual differential indi	icator									
	PLU	JGS See page 70	6		ACCESSORIES	See page 438					
T2	Differential indicator plug		CFA	Retaining clamp							
Low &	Medium Pressure filters 360		MPFI	[\$]							

LMP 950-951

LMP 950-951 spare parts

Order number for spare parts

	σι τοι σρα	io parto						
				6 3b		3f 3b 5 3a 2 3a	 (4) (3c) (3d) 	
			(4)	3b		0000	(3c)	
Item: Filter series LMP 950-951 length 2-3	Q.ty: 2 pcs 2 Filter element See order table		1 pc. 3 (3a ÷ 3g) de number FPM 02050368		2 pcs. 4 nnection plug FPM T2V		1 pc. 5 g spigot with bypass 02001379	1 pc. 6 7 flow rate, exec. P02 length 3 02025033

LMP 952-953-954 series

Maximum working pressure up to 2.5 MPa (25 bar) - Flow rate up to 4500 l/min

LMP 952-953-954 GENERAL INFORMATION

Description

Technical data

Low & Medium Pressure filters

Maximum working pressure up to 2.5 MPa (25 bar) Flow rate up to 4500 l/min

LMP952, LMP953 and LMP954 are ranges of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

Multiple LMP950 filters are connected to a manifold to reduce the pressure drop caused by the filter media and to increase the life time of the filter element.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 4" flanged connections, for a maximum flow rate of 4500 l/min
- Base-mounting design, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Manifolds: Welded Phosphatized Steel
- Bypass valve: Anodized Aluminium

Pressure

Test pressure: 3.5 MPa (35 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

∆p element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Number of filter elements

- LMP 952: 2 filter elements CU950-3
- LMP 953: 3 filter elements CU950-3
- LMP 954: 4 filter elements CU950-3

Seals

- Standard NBR series A
- Optional FPM series V

Temperature From -25 °C to +110 °C

Connections LMP 952-953-954: In-line Inlet/Outlet

Note LMP 952 - 953 - 954 filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

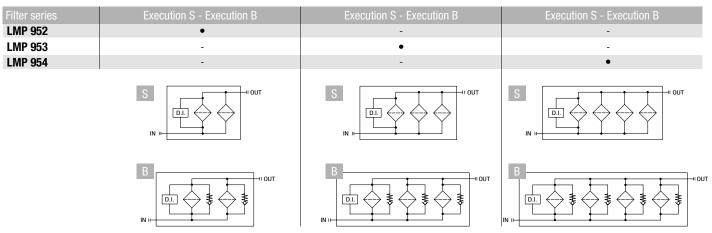
Filter series	Weights [kg]	Volumes [dm ³]
	Length 3	Length 3
LMP 952	96	66
LMP 953	138	99
LMP 954	192	132

GENERAL INFORMATION LMP 952-953-954

FILTER ASSEMBLY SIZING

Flow rates [l/min]

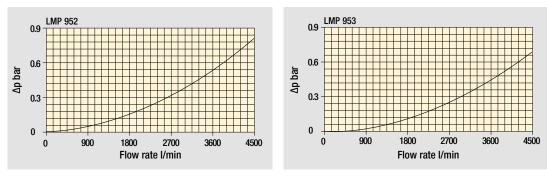
				Filter elen	nent design -	N Series		
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	
LMP 952	3	2172	2294	2766	3106	3256	3998	
LMP 953	3	2842	2964	3403	3696	3820	4395	
LMP 954	3	3259	3372	3770	4026	4133	4618	

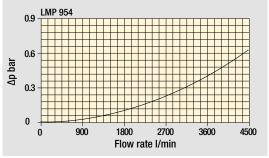

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

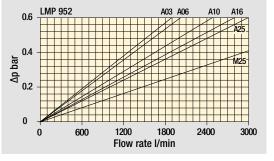
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

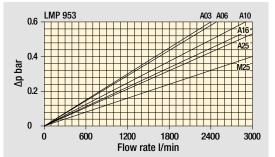
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

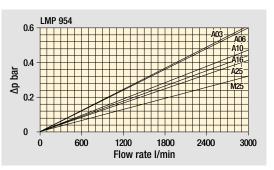

Hydraulic symbols

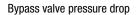


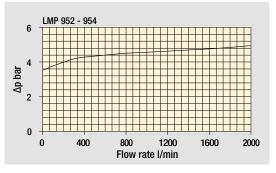
LMP 952-953-954 GENERAL INFORMATION

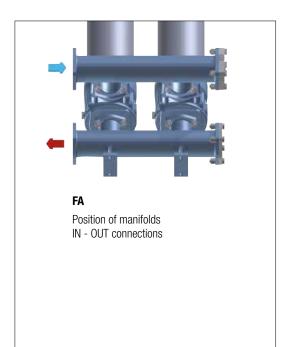

Pressure drop

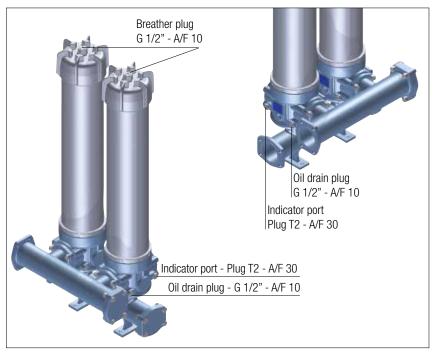

Filter housings Δp pressure drop






Pressure drop of filter complete with cartridge, oil viscosity 30 mm²/s (cSt)




The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. ∆p varies proportionally with density.

GENERAL INFORMATION LMP 952-953-954

Manifolds

Focus on

Execution P02

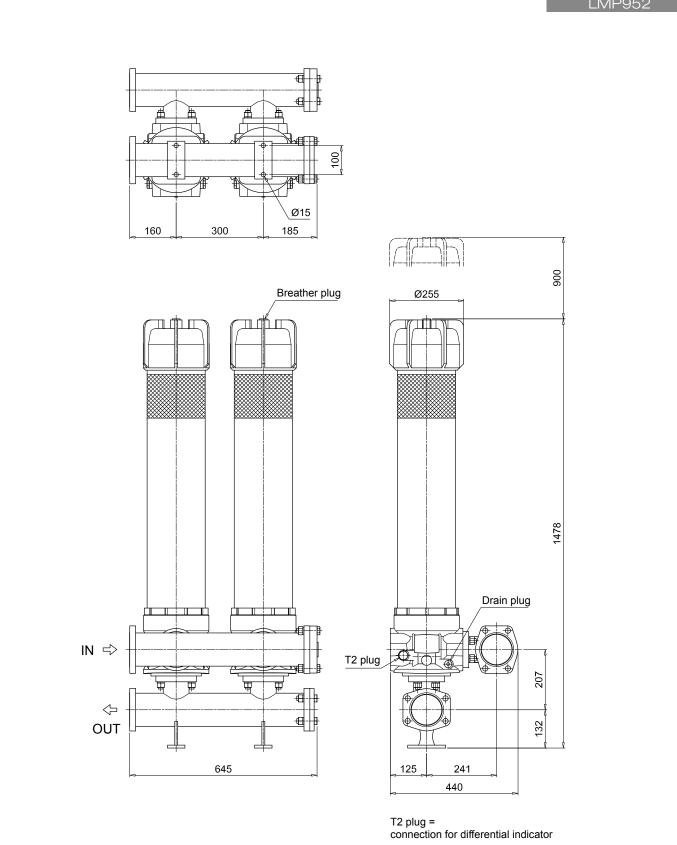
CMV4 & CUV4 Flange options Materials Code Thread 1 - 4" SAE flange 2 - 0-R 4437 (FPM) for flange 3 - Plug G 1-1/4" 4 - 0-R 3168 for plug (FPM) CMV4 G 1 1/4" 5 - No. 4 Hex bolt screws UNI-EN 24017 M16 x 65-10.9 6 - No. 4 Spring washers UNI 1751-B 16 7 - No. 4 Nuts UNI 5587 - M16 1 - 4" SAE flange 2 - 0-R 4437 (FPM) for flange 3 - Plug SAE 20 1 5/8" - 12 UN CUV4 SAE 20 4 - 1147 O-R for plug (FPM) 5 - No. 4 Hex bolt screws 5/8" UNC x 2 1/2" 6 - No. 4 Spring washers UNI 1751-B 16 7 - No. 4 Nuts 5/8" UNC Oil drain plug Flange with oil drain plug for rapid discharge

LMP 952-953-954

Designation & Ordering code

LMP952 LMP953 Length 3 Bypass valve S Without bypass B With bypass 3.5 bar Seals and treatments A NBR V FPM Filtration rating (filter media) A03 Inorganic microfiber A03 Inorganic microfiber A03 Inorganic microfiber M60 Wire mesh 25 µm M60 Wire mesh 90 µm		COMPLETE FILTER	
Length 3 Bypass valve S Without bypass B With bypass 3.5 bar Seals and treatments A NBR V FPM Connections FA 4" SAE 3000 psi Filtration rating (filter media) A03 Inorganic microfiber 3 µm A06 Inorganic microfiber 6 µm M60 Wire mesh 60 µm M90 Wire mesh 90 µm A16 Inorganic microfiber 16 µm	Series and size	Configuration example: LMP952 3	3 A FA A10 N P01
3 Bypass valve S Without bypass B With bypass 3.5 bar Seals and treatments A NBR V FPM Connections FA 4" SAE 3000 psi Filtration rating (filter media) A03 Inorganic microfiber 3 μm M25 Wire mesh 25 μm A06 Inorganic microfiber 6 μm M60 Wire mesh 60 μm A10 Inorganic microfiber 10 μm M90 Wire mesh 90 μm	LMP952 LMP953 LMP954		
Bypass valve S Without bypass B With bypass 3.5 bar Seals and treatments A NBR V A NBR V FPM Connections FA 4" SAE 3000 psi Filtration rating (filter media) M25 Wire mesh 25 µm A03 Inorganic microfiber 3 µm M25 Wire mesh 25 µm A06 Inorganic microfiber 6 µm M60 Wire mesh 60 µm A10 Inorganic microfiber 10 µm M90 Wire mesh 90 µm	Length		
S Without bypass B With bypass 3.5 bar Seals and treatments A NBR V FPM Connections FA 4" SAE 3000 psi Filtration rating (filter media) A03 Inorganic microfiber 3 µm A06 Inorganic microfiber 6 µm M60 Wire mesh 25 µm M60 Wire mesh 60 µm M90 Wire mesh 90 µm	3		
S Without bypass B With bypass 3.5 bar Seals and treatments A NBR V FPM Connections FA 4" SAE 3000 psi Filtration rating (filter media) A03 Inorganic microfiber 3 µm A06 Inorganic microfiber 6 µm M60 Wire mesh 25 µm M60 Wire mesh 60 µm M90 Wire mesh 90 µm	Bypass valve		
A NBR V FPM Connections FA 4" SAE 3000 psi Filtration rating (filter media) A03 Inorganic microfiber 3 μm M25 Wire mesh 25 μm A06 Inorganic microfiber 6 μm M60 Wire mesh 60 μm A10 Inorganic microfiber 10 μm M90 Wire mesh 90 μm			
A NBR V FPM Connections FA 4" SAE 3000 psi Filtration rating (filter media) A03 Inorganic microfiber 3 μm M25 Wire mesh 25 μm A06 Inorganic microfiber 6 μm M60 Wire mesh 60 μm A10 Inorganic microfiber 10 μm M90 Wire mesh 90 μm			
V FPM Connections FA 4" SAE 3000 psi Filtration rating (filter media) A03 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm			
Connections FA 4" SAE 3000 psi Filtration rating (filter media) A03 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm			
FA 4" SAE 3000 psi Filtration rating (filter media) A03 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm			
Filtration rating (filter media) A03 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm A06 Inorganic microfiber 10 μm A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm	Connections		
A03 Inorganic microfiber3 μmM25 Wire mesh 25 μmA06 Inorganic microfiber6 μmM60 Wire mesh 60 μmA10 Inorganic microfiber10 μmM90 Wire mesh 90 μmA16 Inorganic microfiber16 μm	FA 4" SAE 3000 psi		
A03 Inorganic microfiber3 μmM25 Wire mesh 25 μmA06 Inorganic microfiber6 μmM60 Wire mesh 60 μmA10 Inorganic microfiber10 μmM90 Wire mesh 90 μmA16 Inorganic microfiber16 μm			
A06 Inorganic microfiber6 μmA10 Inorganic microfiber10 μmA16 Inorganic microfiber16 μm			
A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm	·		
A16 Inorganic microfiber 16 µm			
A25 Inorganic microfiber 25 µm	A16 Inorganic microfiber 16 µm		
	A25 Inorganic microfiber 25 µm		
WA025 Water absorber inorganic microfiber 25 um	WA025 Water absorber inorganic microfiber 25 µm		
Element Δp Execution			
<u>N</u> 20 bar <u>P01</u> MP Filtri standard P02 With internal tube for low flow rate		N 20 Dai	
Pxx Customized			

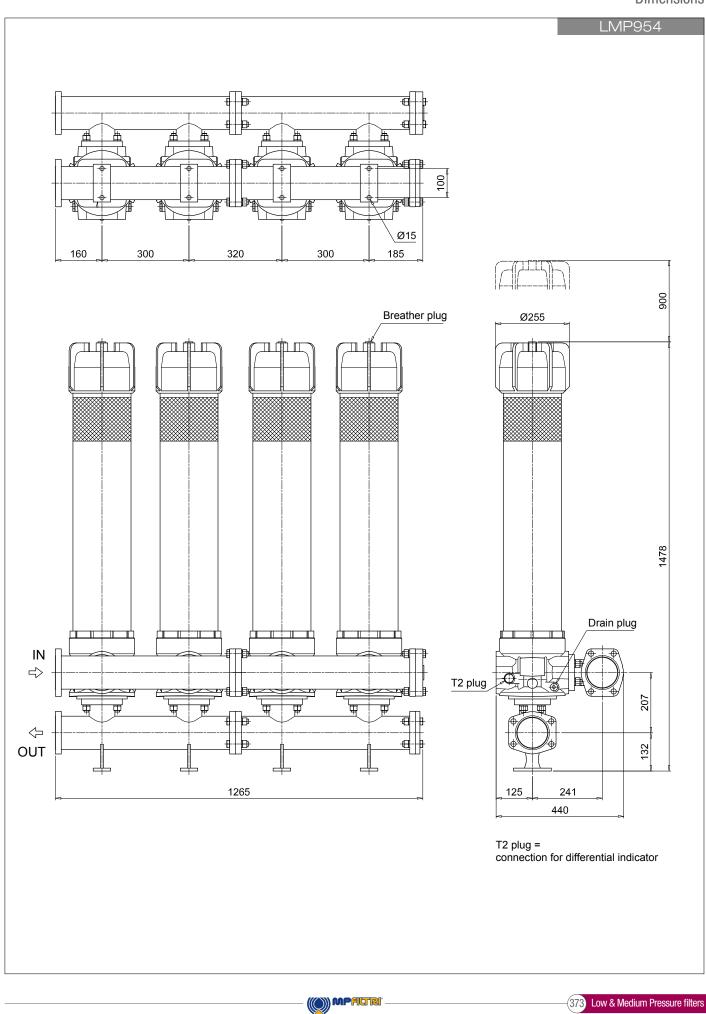
FILTER	ELEMENT	
Element series and size	Configuration example: CU950 3 A1	0 A N P01
CU950		
Element length		
3		
Filley equipe and size		
Filter series and size LMP952 Nr. 2 filter elements		
LMP953 Nr. 3 filter elements		
LMP954 Nr. 4 filter elements		
Filtration rating (filter media) A03 Inorganic microfiber 3 μm M25 Wire mesh 25 μm		
A03 morganic microfiber 5 μm A06 Inorganic microfiber 6 μm M60 Wire mesh 60 μm		
Add inorganic microfiber 10 μmMod Wire mesh 00 μmA10 Inorganic microfiber 10 μmM90 Wire mesh 90 μm		
A16 Inorganic microfiber 16 μm		
A25 Inorganic microfiber 25 µm		
WA025 Water absorber inorganic microfiber 25 µm		
01.		
Seals A NBR		
V FPM		
	Element Δp	Execution
	N 20 bar	P01 MP Filtri standard
		Pxx Customized


	CLOGGI	See page 686		
DEA	Electrical differential indicator	DTA	Electronic differential indicator	
DEM	Electrical differential indicator	DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator			

T2 Differential indicator plug

PLUGS

See page 706



LMP 952-953-954

LMP 952-953-954

LMP 952-953-954 spare parts

Order number for spare parts

LMP 952 - 953 - 954 (7)(2)(5b 5 { _ 5a 3 6d) <u>(</u>6a) (4) Item 7: for complete filter code and spare parts, see LMP 950 - 951 series chapter Quantity: - filter spare parts: LMP 952 - 2 pcs. LMP 953 - 3 pcs. LMP 954 - 4 pcs. - filter seal kit: LMP 952 - 2 pcs. LMP 953 - 3 pcs. LMP 954 - 4 pcs. (4) **6** (6a ÷ 6d) Item: (2) (3) **5** (5a-5b) (7) Manifold IN " SAE <u>3</u>000 psi plugged flange Threaded fasteners kit Filter Manifolds seal kit Filter Q.ty Q.ty Q.ty Q.ty NBR FPM Q.ty eri 1 pc. 01039270 01039271 02050404 02050405 1 pc. LMP 952 2 pcs. 02049051 2 pcs. 1 pc. 01042012 LMP 953 1 pc. 01039337 01039338 2 pcs. 1 pc. 02050404 02050405 1 pc. 02049052 3 pcs. LMP9513xxF1xxxNP0x 1 pc. 02050406 02050407 1 pc. 02049053 LMP 954 2 pcs. 01039270 01039271 2 pcs. 4 pcs.

LMD 211 series

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 200 l/min

LMD 211 GENERAL INFORMATION

Description

Low & Medium Pressure filters

Duplex

Maximum working pressure up to 6 MPa (60 bar) Flow rate up to 200 l/min

LMD211 is a range of versatile low pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1 1/2" and flanged connections up to 1 1/2", for a maximum flow rate of 200 l/min
- Fine filtration rating, to get a good cleanliness level into the system

- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.

- Balancing valve integrated in the changeover lever, to equalize the housing pressure before the switch
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work - Optional sampling ports, to get samples of fluid or to connect additional
- instrument to the system - Visual, electrical and electronic differential clogging indicators

Common applications:

- Systems where shut-down causes high costs
- Systems where shut-down causes safety issues

Technical data

Filter housing materials

- Head: Aluminium
- Bowl: Cataphoretic painted steel
- Bypass valve: AISI 304 Polyamide

Pressure

- Test pressure: 9 MPa (90 bar)
- Burst pressure: 21 MPa (210 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 6 MPa (60 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) $\pm 10\%$
- Other opening pressures on request.

∆p element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature From -25° C to +110° C

Connections Inlet/Outlet In-Line

Note LMD 211 filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

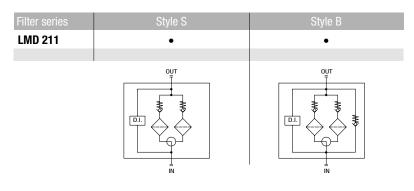
Filter series	Weights [kg]			Volumes [dm ³]]			
	Length					Length				
LMD 211		9.5	11.2	12.8			4.1	4.6	5.3	
		0.0	11.6	12.0			1.1	1.0	0.0	

GENERAL INFORMATION LMD 211

FILTER ASSEMBLY SIZING

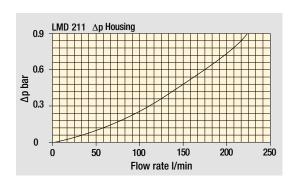
Flow rates [l/min]

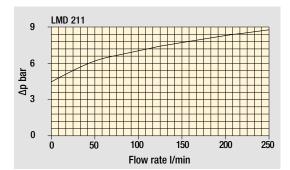
		Filter element design - N Series									
Filter series	Length	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25
	1	90	95	140	147	156	191	192	192	177	181
LMD 211	2	113	121	158	162	173	192	192	193	181	183
	3	131	146	166	169	177	193	194	194	184	187


Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


Hydraulic symbols

Pressure drop Filter housings Δp pressure drop

Bypass valve pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

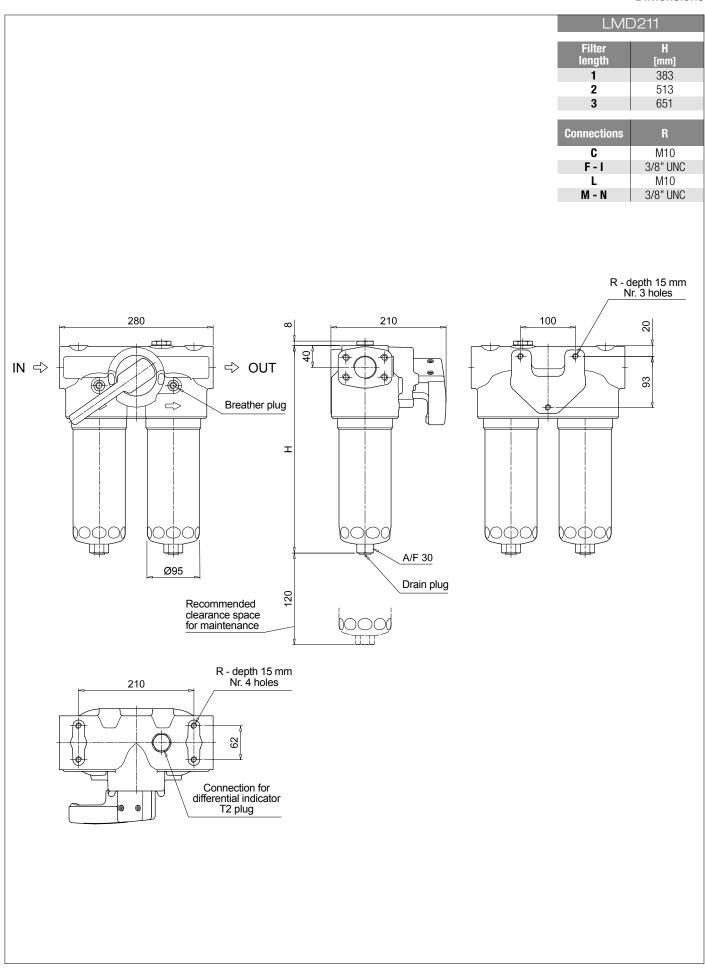
Designation & Ordering code

MD 211

	COMPLETE FILTER		
Series and size	Configuration example: LMD211	3 B A (C 6 A10 N P01
LMD211			
Length 1 2 3			
Bypass valve			
S Without bypass B With bypass	3.5 bar		
Seals and treatments A NBR			
V FPM			
Connections C G 1 1/2"			
F 1 1/2" NPT			
I SAE 24 - 1 7/8" - 12 UN			
L 1 1/2" SAE 3000 psi/M + G 1 1/4"			
M 1 1/2" SAE 3000 psi/UNC + 1 1/4" NPT N 1 1/2" SAE 3000 psi/UNC + SAE 20 - 1 5/8" UN			
Connection for differential indicator			
6 With plugged connection			
Filtration rating (filter media)			
A03 Inorganic microfiber $3 \ \mu m$ M25 Wire mesh 25			
A06 Inorganic microfiber 6 μm M60 Wire mesh 60			
A10 Inorganic microfiber 10 μm M90 Wire mesh 90 A16 Inorganic microfiber 16 μm P10 Resin impregna	•	Element Δp	Execution
A25 Inorganic microfiber 25 μm P25 Resin impregna		N 20 bar	P01 MP Filtri standard
	<u> </u>		Pxx Customized

WA025 Water absorber inorganic microfiber 25 µm

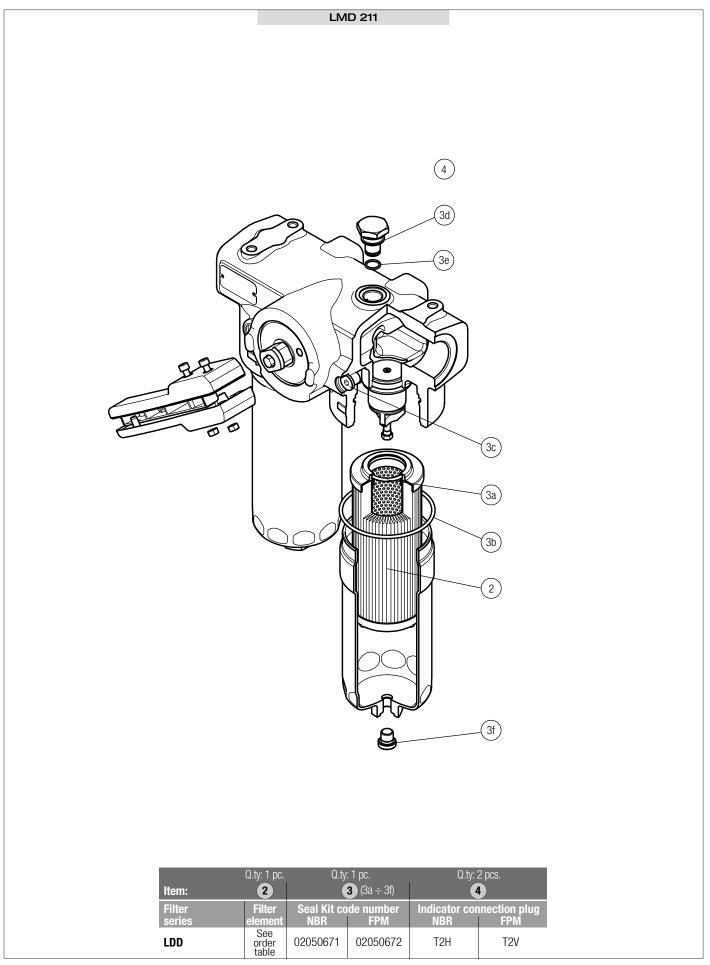
	FILTER I	ELEMENT		
Element series and size CU210		Configuration example: CU210	3 A10 A N P	01
Element length 1 2 3				
Filtration rating (filter media)A03 Inorganic microfiber3 μmA06 Inorganic microfiber6 μmA10 Inorganic microfiber10 μmA16 Inorganic microfiber16 μmA25 Inorganic microfiber25 μm	M25Wire mesh 25 μmM60Wire mesh 60 μmM90Wire mesh 90 μmP10Resin impregnated paperP25Resin impregnated paper25μm			
WA025 Water absorber inorganic m	Seals A N	and treatments Element ∆p IBR N 20 bar PM	Execution PO1 MP Filtri standa Pxx Customized	rd


	CLOGGI	See page 686		
DEA	Electrical differential indicator	DTA	Electronic differential indicator	
DEM	Electrical differential indicator	DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator			

T2 Differential indicator plug

PLUGS

See page 706


LMD 211

LMD 211 SPARE PARTS

Order number for spare parts

LMD 211

LMD 400-401 & 431 series

Maximum working pressure up to 1.6 MPa (16 bar) - Flow rate up to 600 l/min

LMD 400-401&431

Description

Technical data

Low & Medium Pressure filters

Duplex

Maximum working pressure up to 1.6 MPa (16 bar) Flow rate up to 600 l/min

LMD400 is a range of versatile low pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 2 1/2" flanged connections, for a maximum flow rate of 600 I/min
- LMD400: In-line connections
- LMD401: In-line connections with compact design
- LMD431: In-line connections with compact design and base mounting
- Base-mounting design also available, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Balancing valve, to equalize the housing pressure before the switch
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Systems where shut-down causes high costs
- Systems where shut-down causes safety issues

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Manifolds: Steel Painted black
- Bypass valve: Steel
- 3-way ball valve: Steel housings Stainless Steel ball
- Valve: Phosphatized Steel Stainless Steel

Pressure

Test pressure: 2.5 MPa (25 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

∆p element type

- Microfibre filter elements series N W: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals FPM series V

Temperature From -25° C to +110° C

Connections

- LMD 400-401: In-line Inlet/Outlet
- LMD 401: Same side
- LMD 400-401-431: In-Line

Note LMP 400 - 401 - 431 filters are provided for vertical mounting

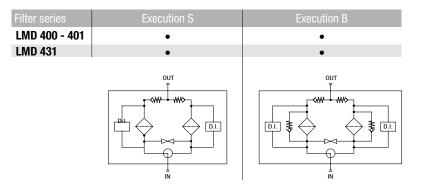
Weights [kg] and volumes [dm³]

Filter series	Weights [kg]				Volumes [dm ³]
	Length				Length 4 5 6
LMD 400 - 401		60	65	72	20 28 33
LMD 431		-	68	78	- 28 33

GENERAL INFORMATION

FILTER ASSEMBLY SIZING

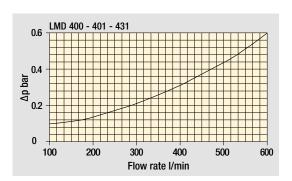
Flow rates [I/min]

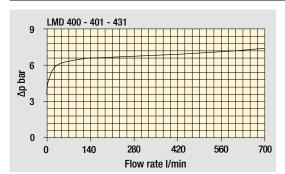

			Filter element design - N Series								
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	P10	P25		
	4	308	349	453	474	530	628	547	567		
LMD 400 - 401	5	395	427	509	547	589	637	577	592		
	6	429	483	558	568	597	639	583	597		
LMD 431	5	395	427	509	547	589	637	577	592		
	6	429	483	558	568	597	639	583	597		

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

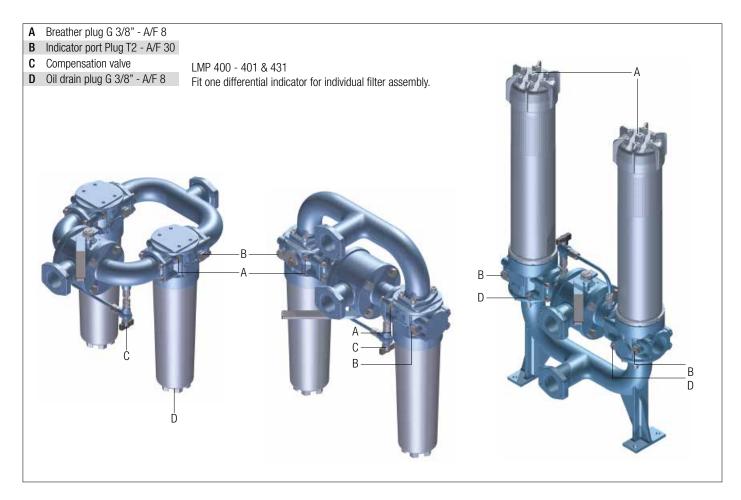

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

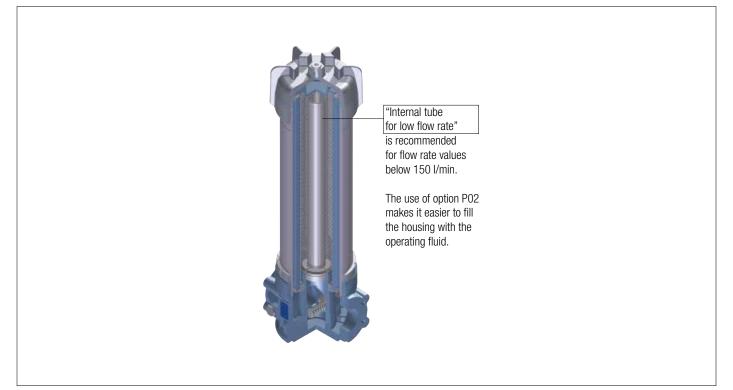


Hydraulic symbols

Pressure drop Filter housings Δp pressure drop

Bypass valve pressure drop




The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Ap varies proportionally with density.

Focus on

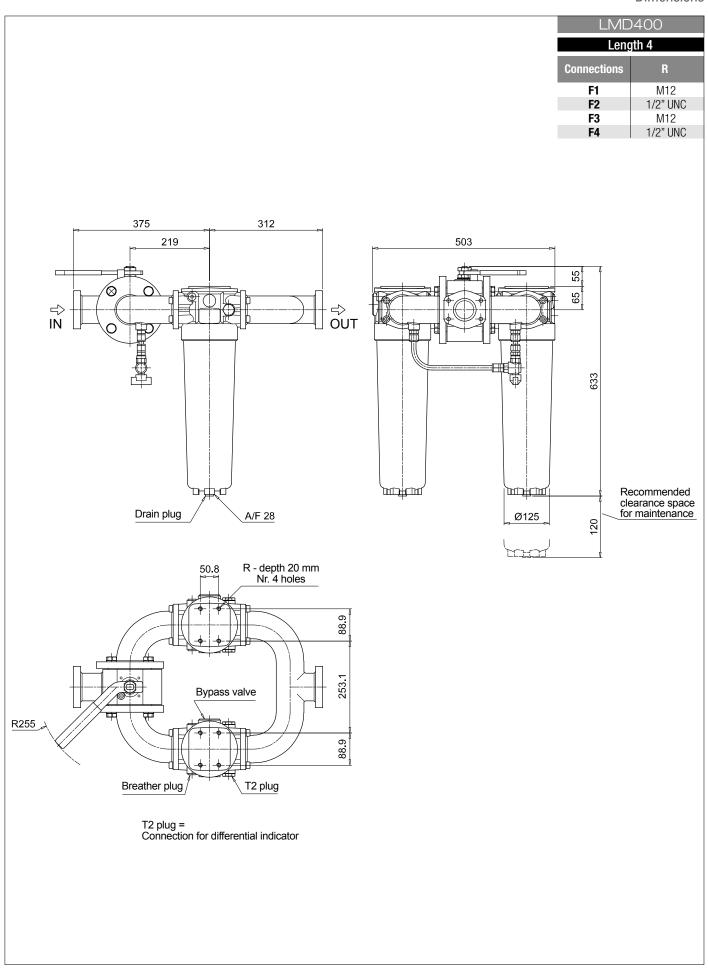
LMD 431: Execution P02

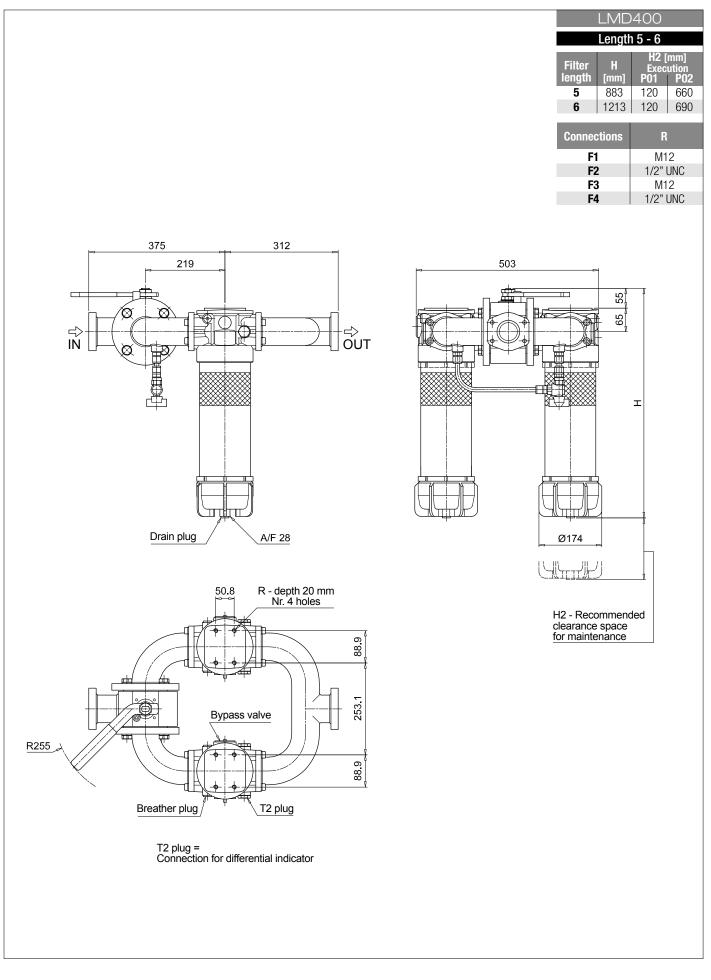
Designation & Ordering code

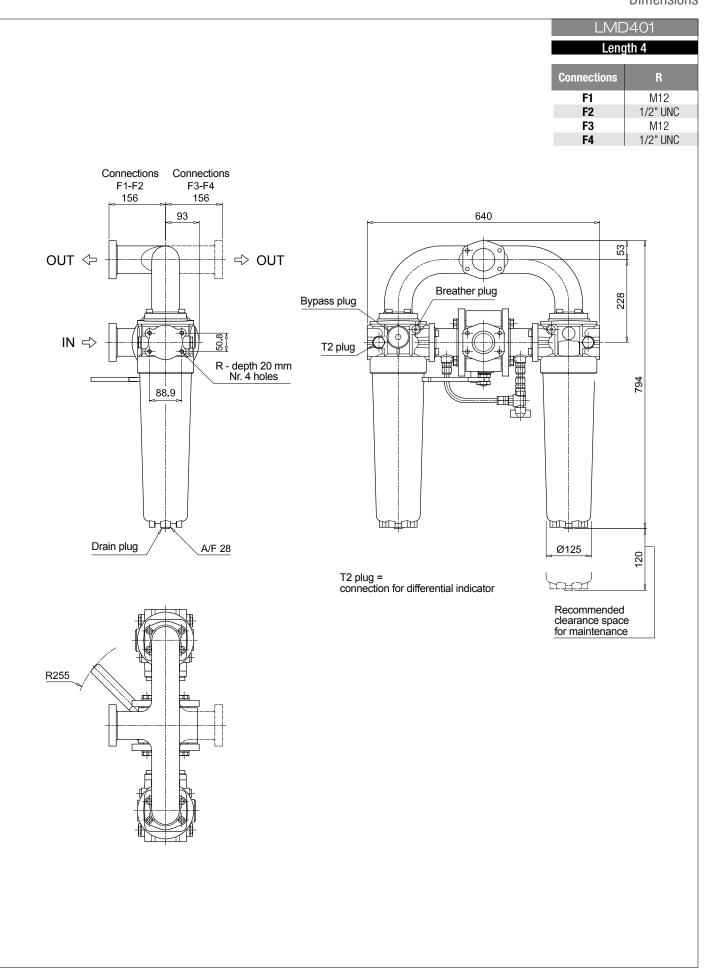
			C	OMPLE	TE FILTE	R											
Series and size				Configu	ration examp	le: LM	D401	4		В		۷	F1	A	10	Ν	P01
LMD400 LMD401																	
Length																	
4 5 6																	
Bypass valve																	
S Without bypass	В	With bypass 3	3.5 bar														
Seals and treatments V FPM																	
Connections			LMD400 LI	VID401													
F1 2 1/2" SAE 3000 psi/M			•	•													
F2 2 1/2" SAE 3000 psi/UNC			•														
F3 2 1/2" SAE 3000 psi/M, In-line c			-	•													
F4 2 1/2" SAE 3000 psi/UNC, In-line	e conne	CTIONS	-	•													
Filtration rating (filter media)																	
A03 Inorganic microfiber 3 µm	M25	Wire mesh 25	μm														
A06 Inorganic microfiber 6 µm	M60	Wire mesh 60	μm														
A10 Inorganic microfiber 10 µm		Wire mesh 90															
A16 Inorganic microfiber 16 µm	P10	Resin impregna	ated paper	10 µm													
A25 Inorganic microfiber 25 µm	P25	Resin impregna	ated paper	25 µm													
WA025 Water absorber inorganic	microfil	per 25 um															
Water absorber morganie	morom	20 µm							_								
																Filte	r length
			Ele	ment ∆p		Exect	ution									4	5 6
			Ν	20 ba	r		MP Filt									•	• •
						P02	Mainte	nance	fron	1 the	hot	tom o	f the I	nousin	n	-	• •

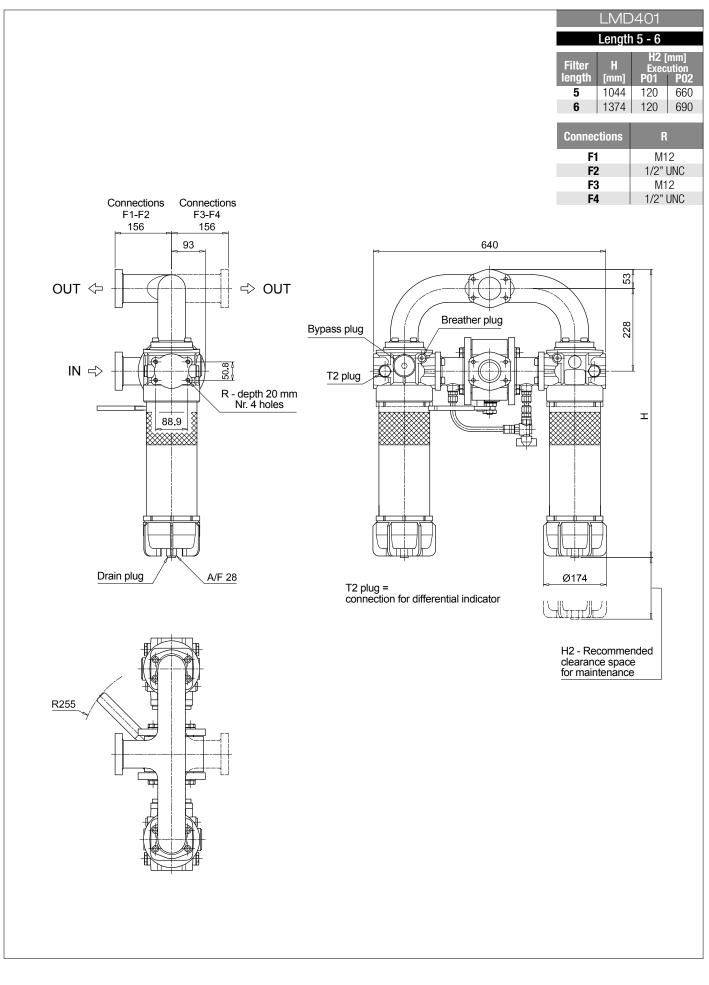
FILTER ELEMENT 4 A10 V N P01 Configuration example: CU400 Element series and size **CU400** Element length 4 5 6 Filtration rating (filter media) A03 Inorganic microfiber 3 μm M25 Wire mesh 25 µm A06 Inorganic microfiber 6 µm M60 Wire mesh 60 µm A10 Inorganic microfiber 10 µm M90 Wire mesh 90 µm A16 Inorganic microfiber 16 µm P10 Resin impregnated paper 10 µm A25 Inorganic microfiber 25 µm P25 Resin impregnated paper 25 µm WA025 Water absorber inorganic microfiber 25 µm Seals V FPM Element ∆p Execution Ν 20 bar P01 MP Filtri standard Pxx Customized

Pxx Customized


	CLOGGI	NG INDICATORS	See page 686
DEA	Electrical differential indicator	DTA Electronic differential indicator	
DEM	Electrical differential indicator	DVA Visual differential indicator	
DLA	Electrical / visual differential indicator	DVM Visual differential indicator	
DLE	Electrical / visual differential indicator		


T2 Differential indicator plug


PLUGS


See page 706

- -

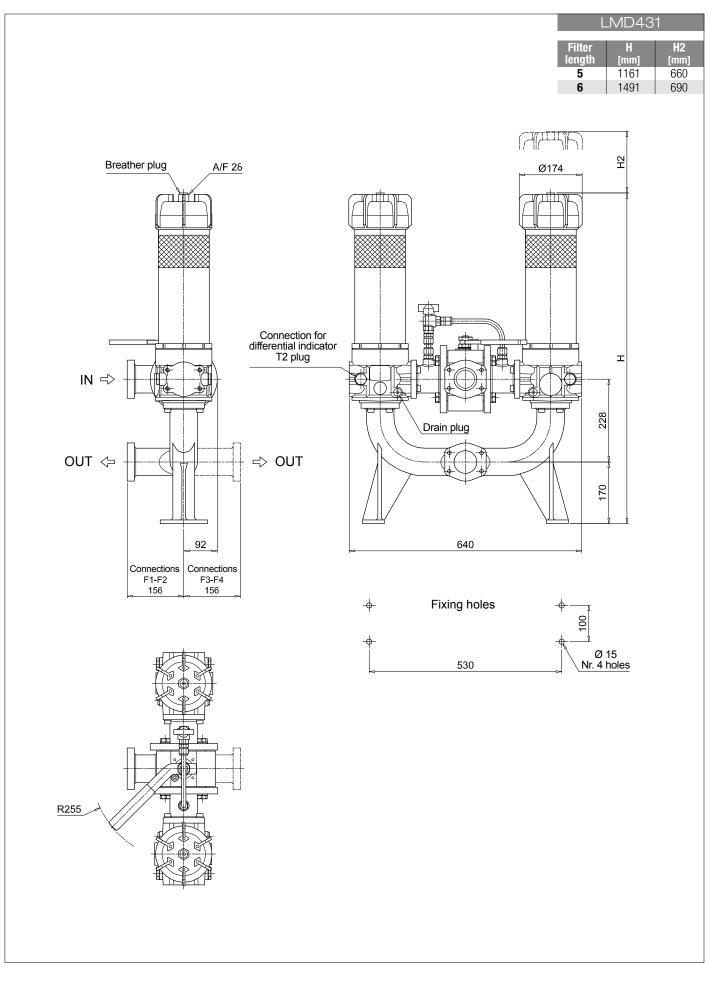
Designation & Ordering code

MD 431

			COMPL	ete filter									
Series and size			Configu	ration example:	MD431	5	В		۷	F1	A10	Ν	P01
LMD431													
Length													
5 6													
Dunaça valva													
Bypass valve S Without bypass	B Witl	1 bypass 3.5 bar											
• Without bypass		1 599433 0.0 541											
Seals and treatments													
V FPM									_				
Connections													
F1 2 1/2" SAE 3000 psi/M													
F2 2 1/2" SAE 3000 psi/UNC													
F3 2 1/2" SAE 3000 psi/M, In-line co	onnections												
F4 2 1/2" SAE 3000 psi/UNC, In-line	connections												
Filtration rating (filter media)													
A03 Inorganic microfiber 3 µm	M25 Wire	mesh 25 µm											
A06 Inorganic microfiber 6 µm		mesh 60 µm											
A10 Inorganic microfiber 10 µm		mesh 90 µm											
A16 Inorganic microfiber 16 µm		i impregnated pap											
A25 Inorganic microfiber 25 µm	P25 Resir	impregnated pap	er 25 µm										
WA025 Water absorber inorganic r	nicrofibor (25 um			Elemen				ution				
WAUZJ Water absorber morganic i		<u>.5 µm</u>			N 2	0 bar				iltri sta		1 fl	
								-	-		I tube for	IOW TIOV	v rate
							<u> </u>	XX	CUSIC	mized			

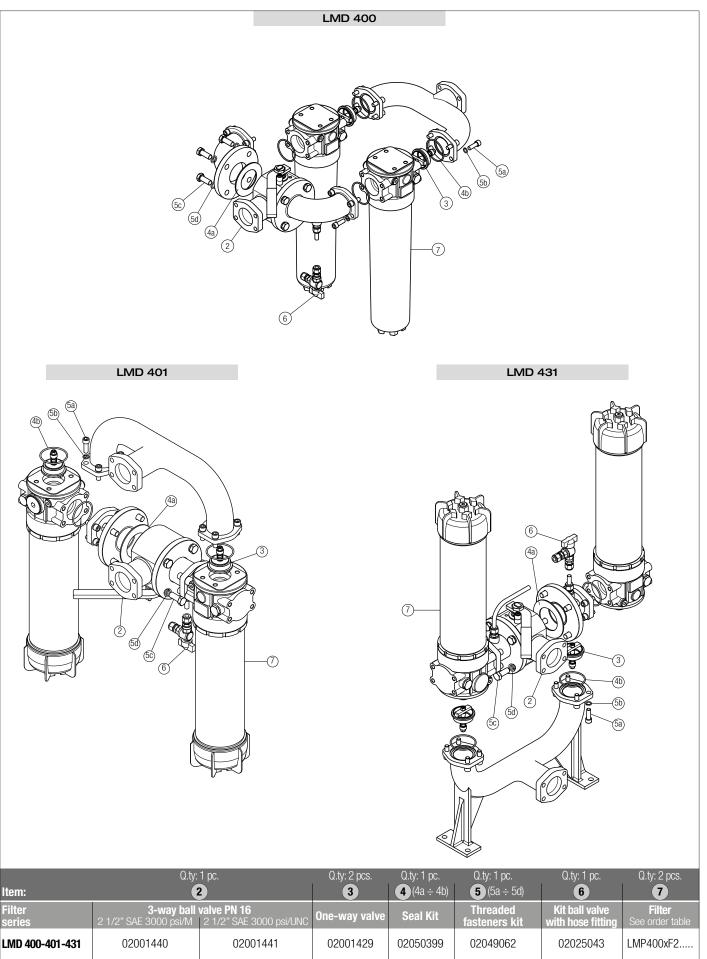
	FILTER ELEN	IENT						
Element series and size		Configuration example:	CU400	5	A10	Ý	Ň	P01
CU400								
Element length								
5 6								
Filtration rating (filter media)								
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25 µm							
A06 Inorganic microfiber 6 μm	M60 Wire mesh 60 μm							
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90 µm							
A16 Inorganic microfiber 16 µm	P10 Resin impregnated paper 10 µm							
A25 Inorganic microfiber 25 µm	P25 Resin impregnated paper 25 µm							
WA025 Water absorber inorganic	microfiber 25 um							
HACE Mater aborisor morganio								
0								
Seals V FPM								
<u> </u>								
		Elem	ent ∆p		Exec	ution		
		N	20 bar		P01		Filtri sl	andard
					Рхх	Cust	omize	d

	CL	OGGING INDICAT	DRS	See page 686
DEA	Electrical differential indicator	DTA	Electronic differential indicator	
DEM	Electrical differential indicator	DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	DVN	Visual differential indicator	
DLE	Electrical / visual differential indicator			


T2 Differential indicator plug

PLUGS

See page 706


LMD 431

LMD 400-401&431

Order number for spare parts

LMD 951 series

Maximum working pressure up to 1.6 MPa (16 bar) - Flow rate up to 1200 l/min

LMD 951 GENERAL INFORMATION

Description

Low & Medium Pressure filters

Duplex

Maximum working pressure up to 1.6 MPa (16 bar) Flow rate up to 1200 l/min

LMD950 is a range of versatile low pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Flanged connections up to 4", for a maximum flow rate of 1200 l/min Base-mounting design, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Balancing valve, to equalize the housing pressure before the switch
- Bypass valve, to relieve excessive pressure drop across the filter media
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Systems where shut-down causes high costs
- Systems where shut-down causes safety issues

Technical data

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Manifolds: Welded Painted black
- Bypass valve: Steel
- 3-way ball valve: Steel body Stainless steel ball
- Check valve: Cast Iron body AISI 304 leaf

Pressure

- SAE + DIN Flange
- Test pressure: 2.5 MPa (25 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Number of filter elements LMD 951: 2 filter elements CU950-3

∆p element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals FPM series V

Temperature From -25° C to +110° C

Connections - LMD 951: In-line Inlet/Outlet - Same side

Note LMD 951 filters are provided for vertical mounting

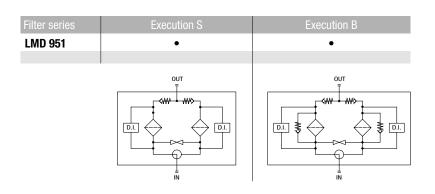
Weights [kg] and volumes [dm³]

Filter series	Weights [kg]	Volumes [dm ³]
	DN 80 DN 100	DN 80 DN 100
LMD 951	102 130	62 66

FILTER ASSEMBLY SIZING

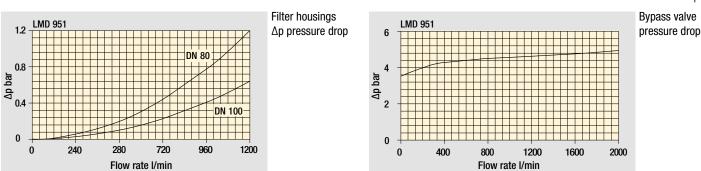
Flow rates [l/min]

			Filter element design - N Series							
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90			
LMD 951	3	853	884	995	1066	1096	1233			


Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

Pressure drop

Execution P02

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. ∆p varies proportionally with density.

Focus on

"Internal tube for low flow rate" is recommended for flow rate values below 100/150 l/min. The use of option P02 LMD 951 makes it easier to fill Fit one differential indicator the housing with the for individual filter assembly. operating fluid. Α Indicator port Plug T2 - A/F 30 Compensation valve В Oil drain plug G 1/2" - A/F 10 С

MPFILTRI

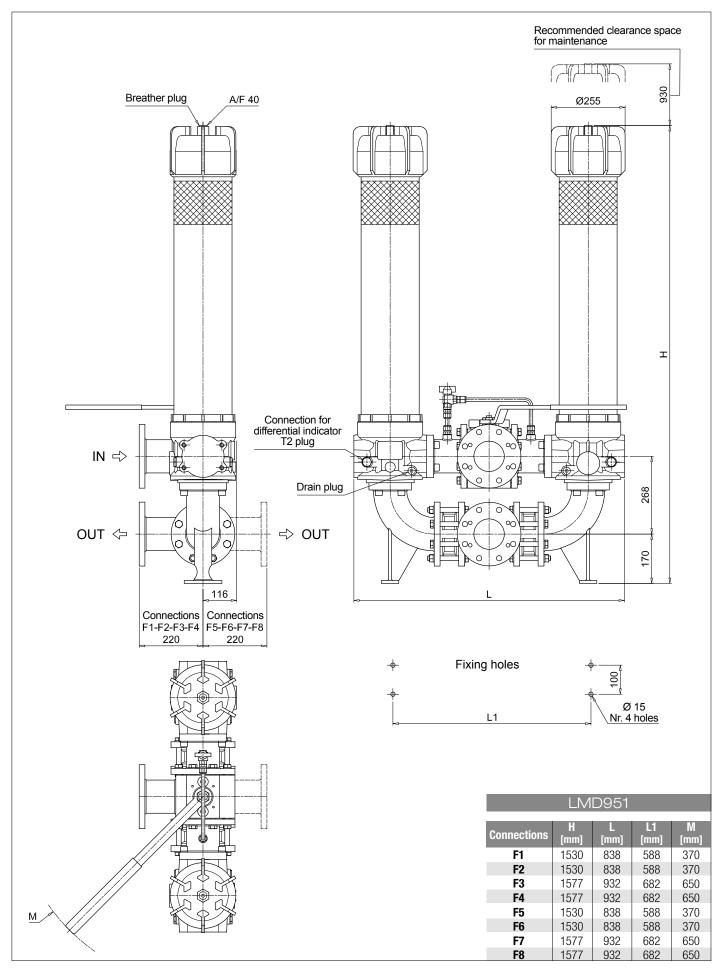
403 Low & Medium Pressure filters

Designation & Ordering code

_MD 951

	COMPLETE FILTER							
Series and size	Configuration example: LMD951 3	B	V	F 1	A1	0	N [P01
LMD951								
Length								
3								
Bypass valve								
S Without bypass B With bypass 3.5 bar		-						
Seals and treatments								
V FPM								
Connections								
F1 3" SAE 3000 psi/M								
F2 3" SAE 3000 psi/UNC								
F3 4" SAE 3000 psi/M								
F4 4" SAE 3000 psi/UNC								
F5 3" SAE 3000 psi/M, In-line connections								
F6 3" SAE 3000 psi/UNC, In-line connections								
F7 4" SAE 3000 psi/M, In-line connections								
F8 4" SAE 3000 psi/UNC, In-line connections								
Filtration rating (filter media)								
A03 Inorganic microfiber 3 µm M25 Wire mesh 25 µm								
A06 Inorganic microfiber 6 µm M60 Wire mesh 60 µm								
A10 Inorganic microfiber 10 µm M90 Wire mesh 90 µm					_			
A16 Inorganic microfiber 16 µm								
A25 Inorganic microfiber 25 µm	Element Δp	Exe	cution		1			
<u>.</u>	N 20 bar	P01	MP	Filtri s	standaro	ł		
WA025 Water absorber inorganic microfiber 25 µm		P02	With	n inter	rnal tube	e for lov	w flow	rate
		Рхх	Cus	tomiz	ed			

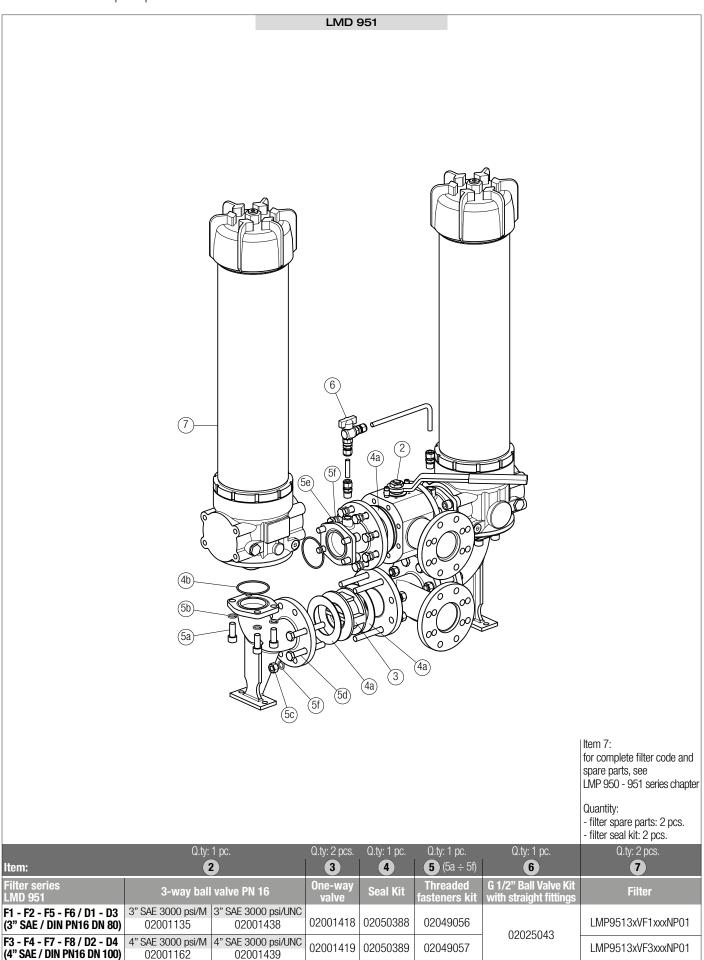
	FILT	ER ELEMENT	
Element series and size CU950		Configuration example: CU950	3 A10 V N P01
Element length 3		—	
Filtration rating (filter media)A03Inorganic microfiber3 µmA06Inorganic microfiber6 µmA10Inorganic microfiber10 µmA16Inorganic microfiber16 µmA25Inorganic microfiber25 µm	M25 Wire mesh 25 μm M60 Wire mesh 60 μm M90 Wire mesh 90 μm	-	
WA025 Water absorber inorganic n Seals	nicrofiber 25 µm		
V FPM		Element Δp N 20 bar	Execution P01 MP Filtri standard Pxx Customized


	CLOGGI	NG INDICATORS	See page 686
DEA	Electrical differential indicator	DTA Electronic differential indicator	
DEM	Electrical differential indicator	DVA Visual differential indicator	
DLA	Electrical / visual differential indicator	DVM Visual differential indicator	
DLE	Electrical / visual differential indicator		

T2 Differential indicator plug

PLUGS

See page 706


LMD 951

LMD 951 SPARE PARTS

Order number for spare parts

LMD 951

DIN 24550 Filter element according to DIN 24550

LDP & LDD series

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 360 l/min

LMP 900-901 series

Maximum working pressure up to 3 MPa (30 bar) - Flow rate up to 2000 I/min

Maximum working pressure up to 2 MPa (20 bar) - Flow rate up to 3000 l/min

LDP & LDD series

Filter element according to DIN 24550

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 360 l/min

LDP & LDD GENERAL INFORMATION

Filter element according to DIN 24550

Descriptions

Low & Medium Pressure filters

Maximum working pressure up to 6 MPa (60 bar) Flow rate up to 360 l/min

LDP is a range of versatile low pressure filter for transmission, protection of sensitive components in low pressure hydraulic systems and filtration of the coolant into the machine tools.

They are also suitable for the off-line filtration of small reservoirs. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1 1/2", for a maximum return flow rate of 360 l/min
- Filter element designed in accordance with DIN 24550 regulation
- Fine filtration rating, to get a good cleanliness level into the system Water removal elements, to remove the free water from the hydraulic fluid.
- For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Visual, electrical and electronic differential clogging indicators

Common applications:

Delivery lines, in low pressure industrial equipment or mobile machines

LDD is a range of versatile low pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1 1/2" and flanged connections up to 1 1/2", for a maximum flow rate of 360 l/min
- Filter element designed in accordance with DIN 24550 regulation
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Balancing valve integrated in the changeover lever, to equalize the housing pressure before the switch
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
 Optional sampling ports, to get samples of fluid or to connect additional instrument to the system
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Systems where shut-down causes high costs
- Systems where shut-down causes safety issues

Technical data

Filter housing materials

- Head: Aluminium
- Bowl: Cataphoretic painted steel
- Bypass valve: AISI 304 Polyamide

Pressure

- Test pressure: 9 MPa (90 bar)
- Burst pressure: 21 MPa (210 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 6 MPa (60 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

∆p element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN
- Seals
- Standard NBR series A
- Optional FPM series V

Temperature From -25° C to +110° C

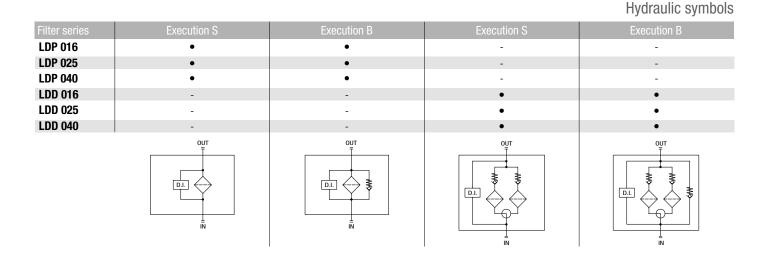
Connections Inlet/Outlet In-Line

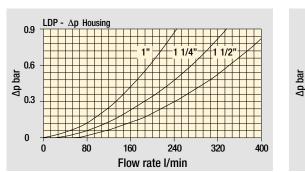
Note LDP - LDD filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]	Volumes [dm ³]
LDP 016	2.0	1.2
LDP 025	3.0	1.6
LDP 040	5.0	2.2
LDD 016	9.3	3.6
LDD 025	9.5	4.1
LDD 040	11.3	4.8

Filter element according to DIN 24550

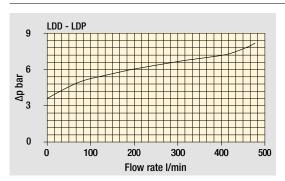

FILTER ASSEMBLY SIZING Flow rates [I/min]


	Filter element design - N Series										
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LDP 016	83	91	178	198	222	350	353	358	295	309	
LDP 025	124	134	227	245	265	357	358	358	319	330	
LDP 040	173	191	274	284	311	359	360	361	332	337	
LDD 016	68	73	120	130	140	189	190	192	169	174	
LDD 025	93	98	142	149	157	191	192	192	178	181	
LDD 040	118	126	161	165	175	192	192	193	182	184	

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar. The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.



Flow rate I/min

Pressure drop Filter housings Δp pressure drop

Bypass valve pressure drop

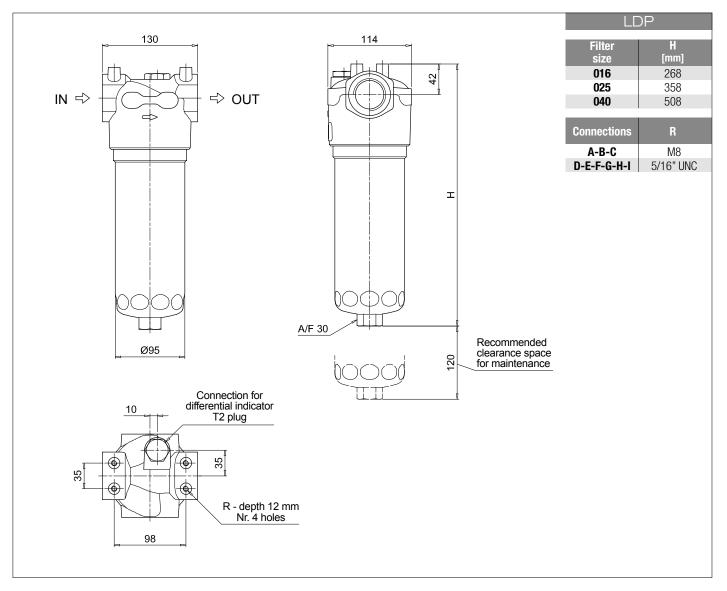
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Designation & Ordering code

	COMPLETE F	ILTER							
Series	Configuration example:	LDP 025	В	A	D	6	A10	N	P01
LDP									
Size									
016 Element according to DIN 24550 - T3 DN160									
025 Element according to DIN 24550 - T3 DN250									
040 Element according to DIN 24550 - T3 DN400									
Bypass valve									
S Without bypass B With bypas	s 3.5 bar								
Seals and treatments									
A NBR									
V FPM									
Connections									
A G 1" F 1 1/2" NPT									
B G 1 1/4" G SAE 16 - 1 5	/16" - 12 UN								
C G 1 1/2" H SAE 20 - 1 5									
D 1" NPT I SAE 24 - 17	/8" - 12 UN								
E 1 1/4" NPT									
Connection for differential indicator									
6 With plugged connection									
Filtration rating (filter media))5 um								
A03 Inorganic microfiber3 μmM25 Wire mesh 2A06 Inorganic microfiber6 μmM60 Wire mesh 6									
Allo Inorganic microfiber 10 μm M90 Wire mesh 9									
	gnated paper 10 µm		Element /	0		Ex	ecution		
	gnated paper 25 µm		N 20			PO		- iltri stan	dard
	<u> </u>					Px	x Cust	omized	

WA025 Water absorber inorganic microfiber 25 µm

	FILTE	R ELEMENT		
Element series		Configuration example:	DN 025 A	A10 A N P01
DN				
Element size		1		
016 Element according to DIN 2455	0 - T3 DN160			
025 Element according to DIN 2455		•		
040 Element according to DIN 2455				
Filtration rating (filter media)				
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25 µm			
A06 Inorganic microfiber 6 µm	M60 Wire mesh 60 µm			
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90 µm			
A16 Inorganic microfiber 16 µm	P10 Resin impregnated paper 10 μm	-		
A25 Inorganic microfiber 25 µm	P25 Resin impregnated paper 25 µm			
		-		
WA025 Water absorber inorganic n	nicrotiber 25 µm			
	Sea		ent Δp	Execution
	A	NBR N	20 bar	P01 MP Filtri standard
	V	FPM		Pxx Customized


CLOGG	GING INDICATORS	See page 686
DEA Electrical differential indicator	DTA Electronic differential indicator	
DEM Electrical differential indicator	DVA Visual differential indicator	
DLA Electrical / visual differential indicator	DVM Visual differential indicator	
DLE Electrical / visual differential indicator		

T2 Differential indicator plug

PLUGS

See page 706

Designation & Ordering code

	COMPLETE FI	LTER								
Series	Configuration example:	LDD	025 E	3	A [С	6	A10	Ν	P01
LDD	-									
Size										
016 Element according to DIN 24550 - T3 DN160										
025 Element according to DIN 24550 - T3 DN250										
040 Element according to DIN 24550 - T3 DN400										
Bypass valve S Without bypass B With bypas	a 2 E har									
S Without bypass B With bypas	58 3.3 Dai									
Seals and treatments										
A NBR					-					
V FPM										
Osumastiana										
Connections										
C G 1 1/2" F 1 1/2" NPT										
F 1.1/2 NPT I SAE 24 - 1 7/8" - 12 UN										
· · · · · · · · · · · · · · · · · · ·										
N 1 1/2" SAE 3000 psi/UNC + SAE 20 - 1 5/8" UN										
Connection for differential indicator										
6 With plugged connection										
Filtration rating (filter media)										
A03 Inorganic microfiber 3 μm M25 Wire mesh 2										
A06 Inorganic microfiber 6 μm A10 Inorganic microfiber 10 μm										
A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm			-			_				
<u>+</u>	gnated paper 10 µm			ent ∆p	~			ecution	iltri otor	dord
A25 Inorganic microfiber 25 μm P25 Resin impregram	gnated paper 25 µm		N	20 ba	.I		_ <u>P0</u> _ Px		Filtri stan omized	uaru
							E 17 A	ι υυδι	UTITZEC	

WA025 Water absorber inorganic microfiber 25 µm

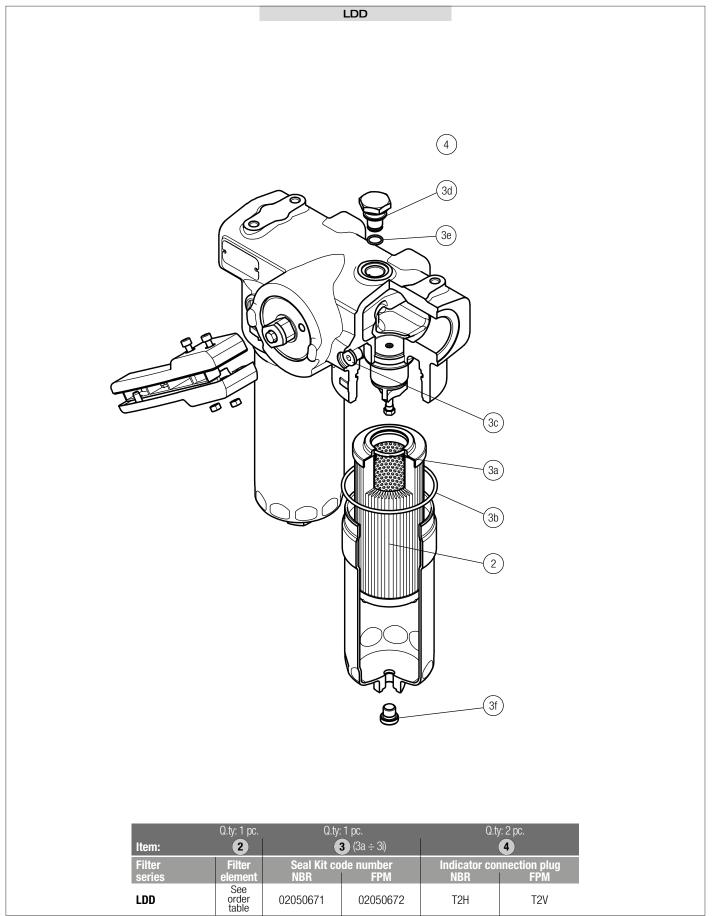
FILTER ELEMENT DN 025 A10 P01 Configuration example: Α Ν Element series DN Element size 016 Element according to DIN 24550 - T3 DN160 025 Element according to DIN 24550 - T3 DN250 040 Element according to DIN 24550 - T3 DN400 Filtration rating (filter media) A03 Inorganic microfiber 3 µm M25 Wire mesh 25 µm A06 Inorganic microfiber 6 µm M60 Wire mesh 60 µm M90 Wire mesh 90 µm A10 Inorganic microfiber 10 µm A16 Inorganic microfiber 16 µm P10 Resin impregnated paper 10 µm A25 Inorganic microfiber 25 µm P25 Resin impregnated paper 25 µm WA025 Water absorber inorganic microfiber 25 µm Seals and treatments Element Ap Execution NBR **P01** MP Filtri standard Α Ν 20 bar V FPM Pxx Customized **CLOGGING INDICATORS** See page 686 DEA Electrical differential indicator DTA Electronic differential indicator DVA Visual differential indicator **DEM** Electrical differential indicator **DVM** Visual differential indicator DLA Electrical / visual differential indicator DLE Electrical / visual differential indicator PLUGS See page 706 Differential indicator plug T2

(())) MPFILTRI

Filter H size [mm] 016 293 025 383 040 533 Connections R C M10 F-1 3/8" UNC M - N 3/8" UNC	
R-depth 15 mm Nr. 3 holes	
R - depth 15 mm Nr. 3 holes Connection for differential indicator T2 plug	

Filter element according to DIN 24550

Order number for spare parts



Filter element according to DIN 24550

Order number for spare parts

LMP 900-901 series

Filter element according to DIN 24550

Maximum working pressure up to 3 MPa (30 bar) - Flow rate up to 2000 I/min

LMP 900-901 general information

Filter element according to DIN 24550

Description

Low & Medium Pressure filters

Maximum working pressure up to 3 MPa (30 bar) Flow rate up to 2000 I/min

LMP900 is a range of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Flanged connections up to 4", for a maximum flow rate of 2000 l/min
- In line or 90° connections, to meet any type of application
- Filter element designed in accordance with DIN 24550 regulation
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems
- Lubrication systems

Technical data

Filter housing materials

- Head: Anodized aluminium
- Housing: Anodized aluminium
- Manifolds: Anodized aluminium
- Bypass valve: Steel

Pressure

- Test pressure: 4.5 MPa (45 bar)
- Burst pressure: 12 MPa (120 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 3 MPa (30 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Number of filter elements

LMP 900-1: 1 filter element CU900 LMP 900-2: 2 filter elements CU900

Filter elements Filter element according to DIN 24550 Size: 1000

∆p element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Connections LMP 900: In-line Inlet/Outlet LMP 901: 90° Inlet/Outlet

Seals

- Standard NBR series A
- Optional FPM series V

Temperature From -25 °C to +110 °C

Note LMP 900 - 901 filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]	Volumes [dm ³]
	Length 1 2	Length 1 2
LMP 900-901	19.2 30.4	16 24

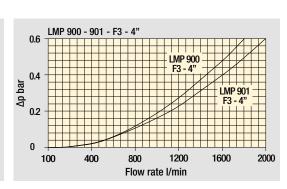
Filter element according to DIN 24550

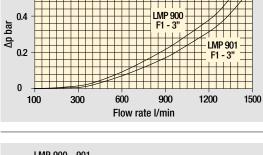
FILTER ASSEMBLY SIZING Flow rates [l/min]

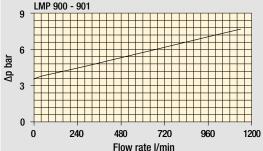
			Filter element design - N Series						
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90		
LMP 900	1	706	877	1264	1291	1444	1803		
LIVIF 500	2	1100	1264	1556	1573	1668	1867		
	1	1							
LMP 901	1	715	899	1337	1369	1552	2000		
LIVIF 901	2	1147	1337	1689	1710	1828	2081		

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar. The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


LMP 900-901 Length 2


Hydraulic symbols Execution B LMP 900-901 • • OUT оит D.I. D.I.

LMP 900 - 901 0.6 0.4 I MP 900 F1 LMP 901 0.2 0 100 300 600 900 1200 1500 Flow rate I/min

Pressure drop Filter housings Δp pressure drop

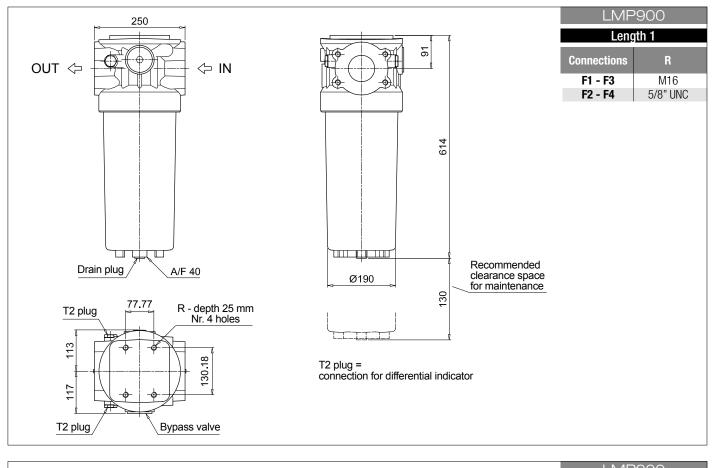
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

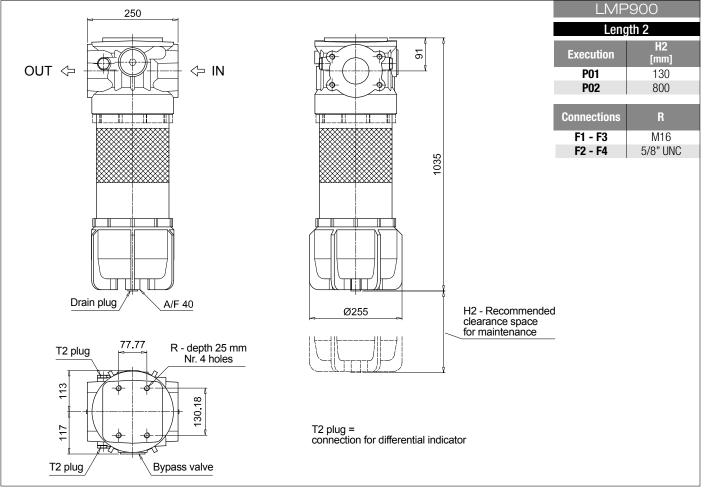
Bypass valve pressure drop

MP 900-901 Filter element according to DIN 24550

Designation & Ordering code

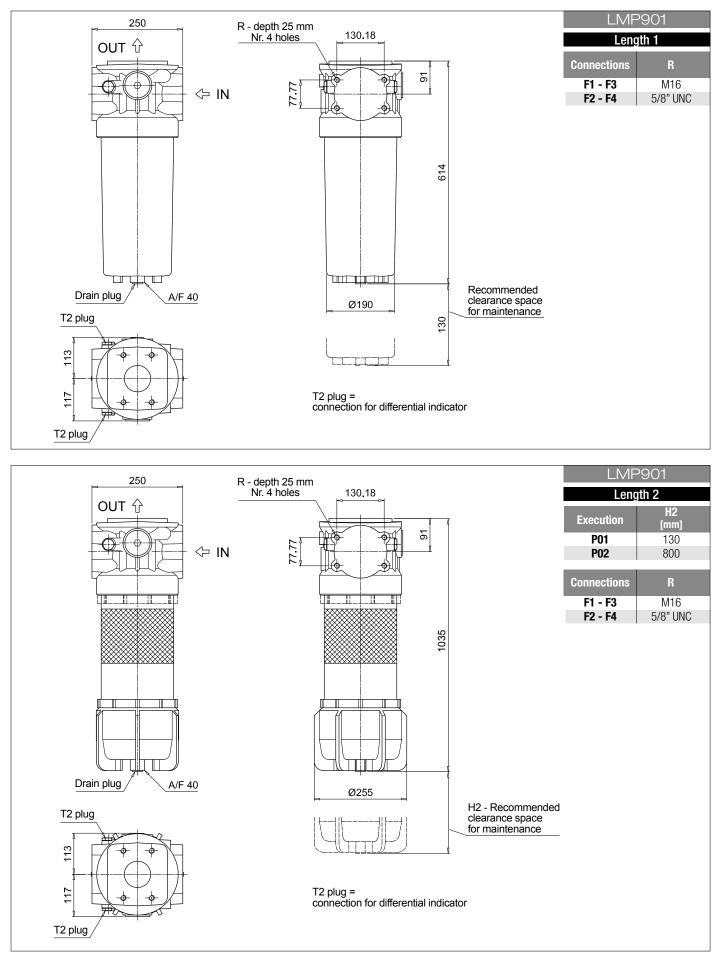
	COMPLETE FILT	ER							
Series and size	Configuration examp	ble: LMP901	2	B	Α	F2	A10	Ν	P01
LMP900 LMP901									
Length									
1 2									
Bypass valve									
S Without bypass B With bypass 3.5 ba	r								
Cools and trackmants									
Seals and treatments A NBR									
V FPM									
Connections									
F1 3" SAE 3000 psi/M									
F2 3" SAE 3000 psi/UNC									
F3 4" SAE 3000 psi/M									
F4 4" SAE 3000 psi/UNC									
Filtration rating (filter media)									
A03 Inorganic microfiber 3 μm M25 Wire mesh 25 μm									
A06 Inorganic microfiber 6 μm M60 Wire mesh 60 μm									
A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm									
Are morganic microfiber 16 µm A25 Inorganic microfiber 25 µm									
WA025 Water absorber inorganic microfiber 25 µm								Filter	length
	Element ∆p	Execution						1	2
	N 20 bar	P01 MP Filtri						•	•
		-	ance from t	the bo	ttom of	the ho	ousing	-	•
		Pxx Customiz	zed						


	FILTE	R ELEMENT				
Element series and size		Configura	ation example: CU900	A10 /	A N [P01
<u>CU900</u>						
Length						
1 Nr. 1 filter element						
2 Nr. 2 filter elements						
Filtration rating (filter media)						
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25 µm					
A06 Inorganic microfiber 6 µm	M60 Wire mesh 60 µm					
	M90 Wire mesh 90 µm					
A16 Inorganic microfiber 16 µm						
A25 Inorganic microfiber 25 µm						
WA025 Water absorber inorganic mic	crofiber 25 um					
Seals						
A NBR						
V FPM						
			Element ∆p	Execu		ord
		<u>N</u>	20 bar		MP Filtri stand Customized	aru
				Pxx	GUSIONIZEU	


	CLOGGING INDICATORS						
DEA	Electrical differential indicator		DTA	Electronic differential indicator			
DEM	Electrical differential indicator		DVA	Visual differential indicator			
DLA	Electrical / visual differential indicator		DVM	Visual differential indicator			
DLE	Electrical / visual differential indicator						
	PLUGS	See page 706		ACCESSORIES	See page 438		
T2	Differential indicator plug - Filter length 1 - 2		CFA	Retaining clamp - Filter length 2			

Low & Medium Pressure filters 424-

Filter element according to DIN 24550 LMP 900-901



LMP 900-901 Filter element according to DIN 24550


Dimensions

()) MPFILTRI

SPARE PARTS

Order number for spare parts

02050366 2 pcs.

02050365

1 pc.

LMP 900-901 length 2

2 pcs.

1 pc.

1 pc.

LMP 902-903 series

Filter element according to DIN 24550

Maximum working pressure up to 2 MPa (20 bar) - Flow rate up to 3000 I/min

LMP 902-903 general information

Filter element according to DIN 24550

Description

Low & Medium Pressure filters

Maximum working pressure up to 2 MPa (20 bar) Flow rate up to 3000 l/min

LMP902 and LMP903 are ranges of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

Multiple LMP950 filters are connected to a manifold to reduce the pressure drop caused by the filter media and to increase the life time of the filter element.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 4" flanged connections, for a maximum flow rate of 3000 I/min
- Filter element designed in accordance with DIN 24550 regulation
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems

Technical data

Filter housing materials

- Head: Anodized aluminium
- Housing: Anodized aluminium
- Manifolds: Welded Phosphatized steel
- Bypass valve: Steel
- Size 1000 filter elements complying with DIN 24550 standard

Pressure

- Test pressure: 3.5 MPa (35 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Number of filter elements

LMP 902: 4 filter elements CU900 LMP 903: 6 filter elements CU900

Filter elements Filter element according to DIN 24550 Size: 1000

∆p element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Connections LMP 902-903: In-line Inlet/Outlet

Seals

Standard NBR series A
 Optional FPM series V

Temperature From -25 °C to +110 °C

Note LMP 902 - 903 filters are provided for vertical mounting

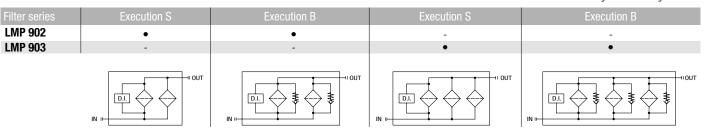
Weights [kg] and volumes [dm³]

Filter series	Weights [kg]	Volumes [dm ³]
	Length 2	Length 2
LMP 902	89.6	58
LMP 903	129.2	87

Filter element according to DIN 24550

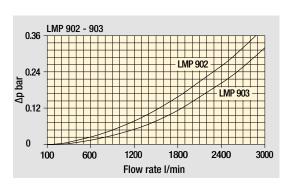
FILTER ASSEMBLY SIZING Flow rates [I/min]

		Filter element design - N Series							
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90		
LMP 902	2	2217	2576	3241	3282	3506	3987		
LMP 903	2	2838	3170	3720	3755	3926	4278		


Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

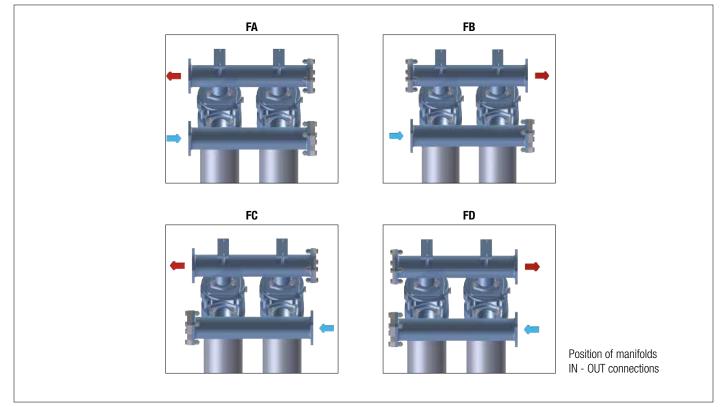
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

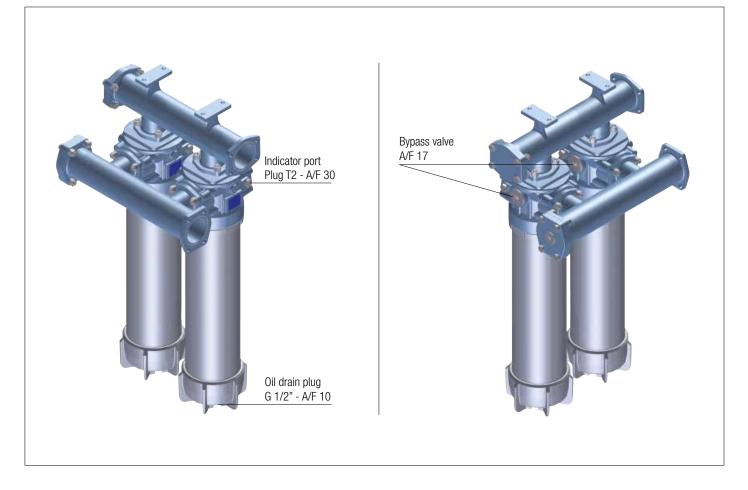

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

Pressure drop Filter housings Δp pressure drop

Bypass valve pressure drop


The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. ∆p varies proportionally with density.


LMP 902-903 GENERAL INFORMATION

Filter element according to DIN 24550

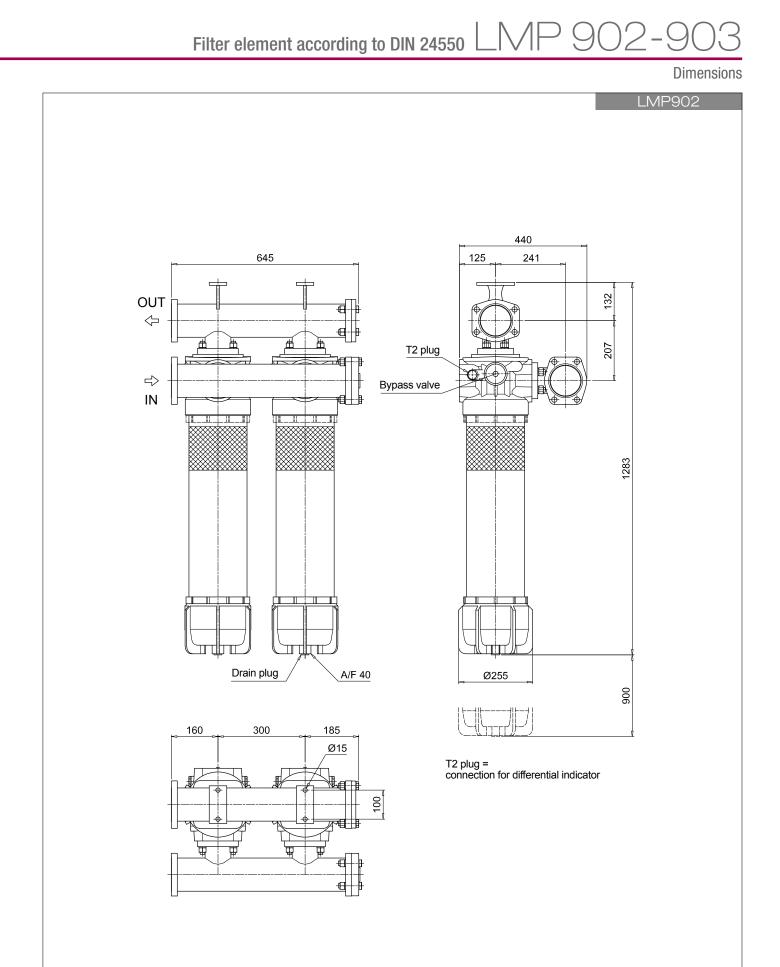
Manifolds

Focus on

LMP 902-903 Filter element according to DIN 24550

Designation & Ordering code

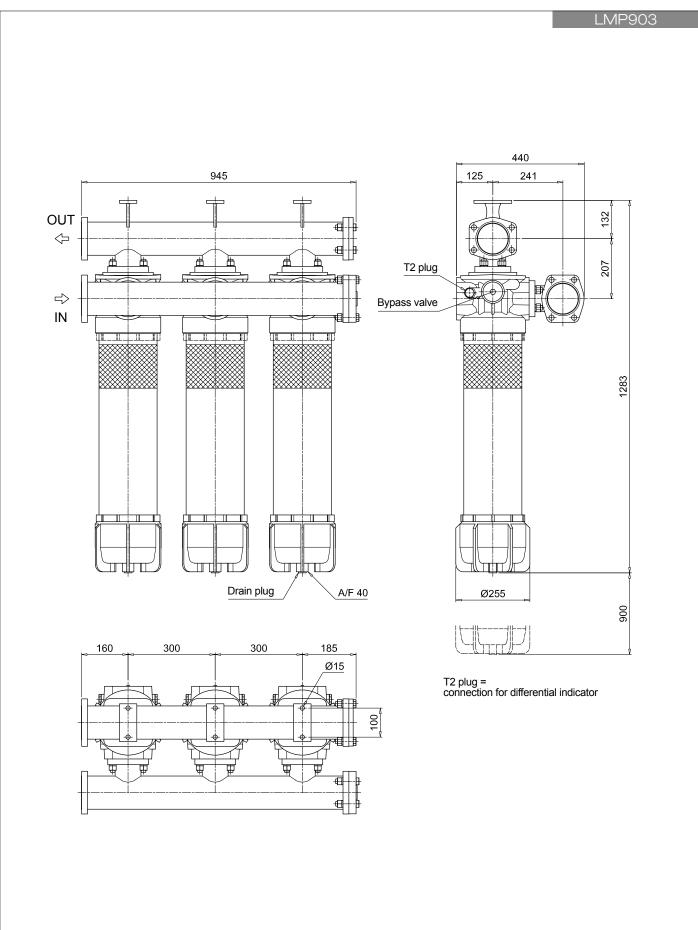
		COMPL	ETE FILTER							
Series and size		Config	juration example: LMP902	2	B	A	FA	10	NF	P01
LMP902 LMP903							\square	\top		
Length										
2										
Bypass valve										
S Without bypass	B With bypass	3.5 bar								
Seals and treatments										
A NBR										
V FPM										
Connections	IN	OUT								
FA 4" SAE 3000 psi	left	left								
FB 4" SAE 3000 psi	left	right								
FC 4" SAE 3000 psi	right	left								
FD 4" SAE 3000 psi	right	right								
Filtration rating (filter media)										
A03 Inorganic microfiber 3 µm	M25 Wire mesh 25	i μm						_		
A06 Inorganic microfiber 6 µm	M60 Wire mesh 60) µm								
A10 Inorganic microfiber 10 µm	M90 Wire mesh 90) µm							_	
A16 Inorganic microfiber 16 µm				Element ∆p			Exec			ľ
A25 Inorganic microfiber 25 µm				N 20 ba	ar		P01		ri standa	ard
WA025 Water absorber inorganic m	icrofiber 25 µm						Рхх	Custom	nized	


	FILTE	R ELEMENT					
Element series and size			Configuration example:	CU900 A	10	A A	N P01
CU900							
Filter series and size							
LMP902 Nr. 4 filter elements		-					
LMP903 Nr. 6 filter elements		_					
Filtration rating (filter media)							
A03 Inorganic microfiber 3 µm M25 Wire me	sh 25 µm				1		
A06 Inorganic microfiber 6 µm M60 Wire me	sh 60 μm	-					
A10 Inorganic microfiber 10 µm M90 Wire me	sh 90 µm	_					
A16 Inorganic microfiber 16 µm							
A25 Inorganic microfiber 25 μm							
WA025 Water absorber inorganic microfiber 25	m						
`	<u></u>	_					
Seals							
A NBR		_	_				
V FPM		_					
			Element ∆p		Execu		
			N 20 bar		P01		standard
					Pxx	Customi	zed

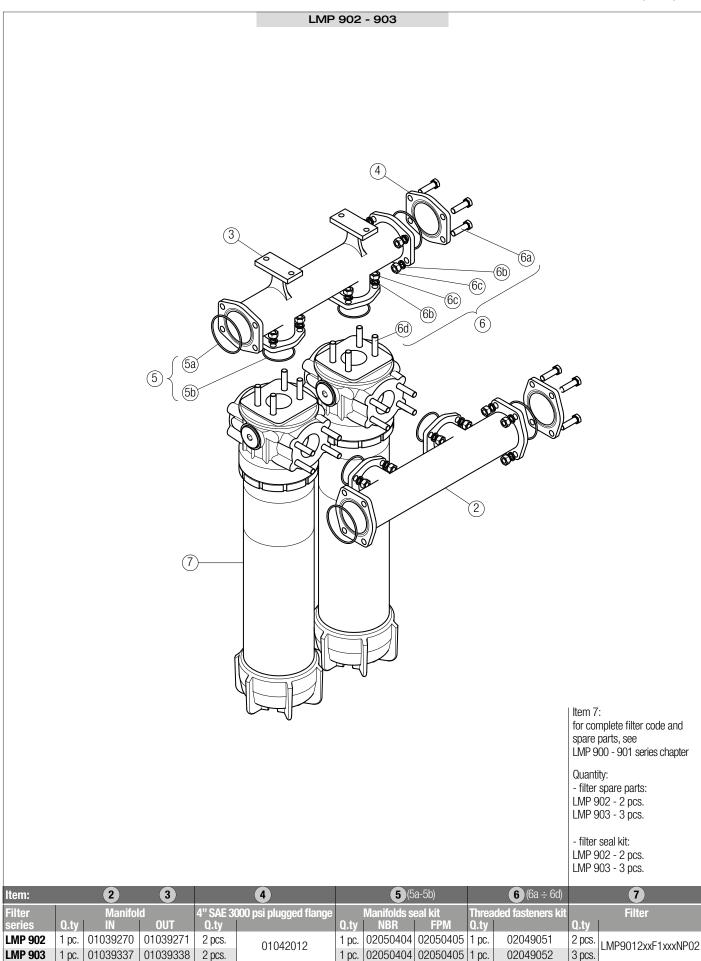
	CLOGG	ING INDICATO	DRS	See page 686
DEA	Electrical differential indicator	DTA	Electronic differential indicator	
DEM	Electrical differential indicator	DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator			

T2 Differential indicator plug

PLUGS

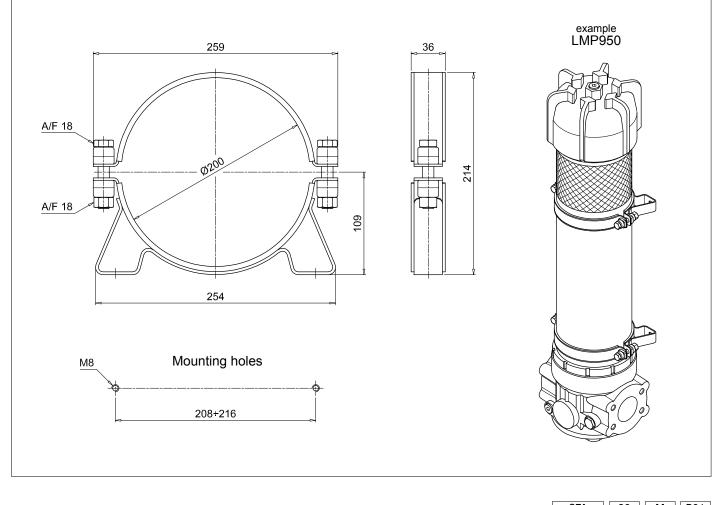

See page 706

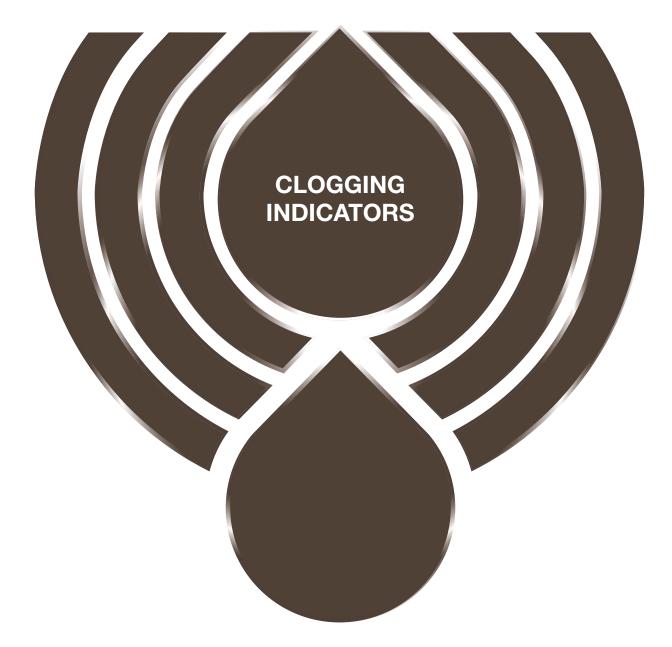
LMP902-903 Filter element according to DIN 24550


Dimensions

Low & Medium Pressure filters 436

SPARE PARTS LMP 902-903


Order number for spare parts



Accessories

RETAINING CLAMP

Series	Configuration example:	CFA 2	20	M	P01
CFA Retaining clamp					
<u> </u>	-				
Size					
20					
Screw					
M Metric					
Execution					
P01 MP Filtri standard					

Clogging indicators are devices that check the life time of the filter elements. They measure the pressure drop through the filter element directly connected to the filter housing.

These devices trip when the clogging of the filter element causes a pressure drop increasing across the filter element.

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators.

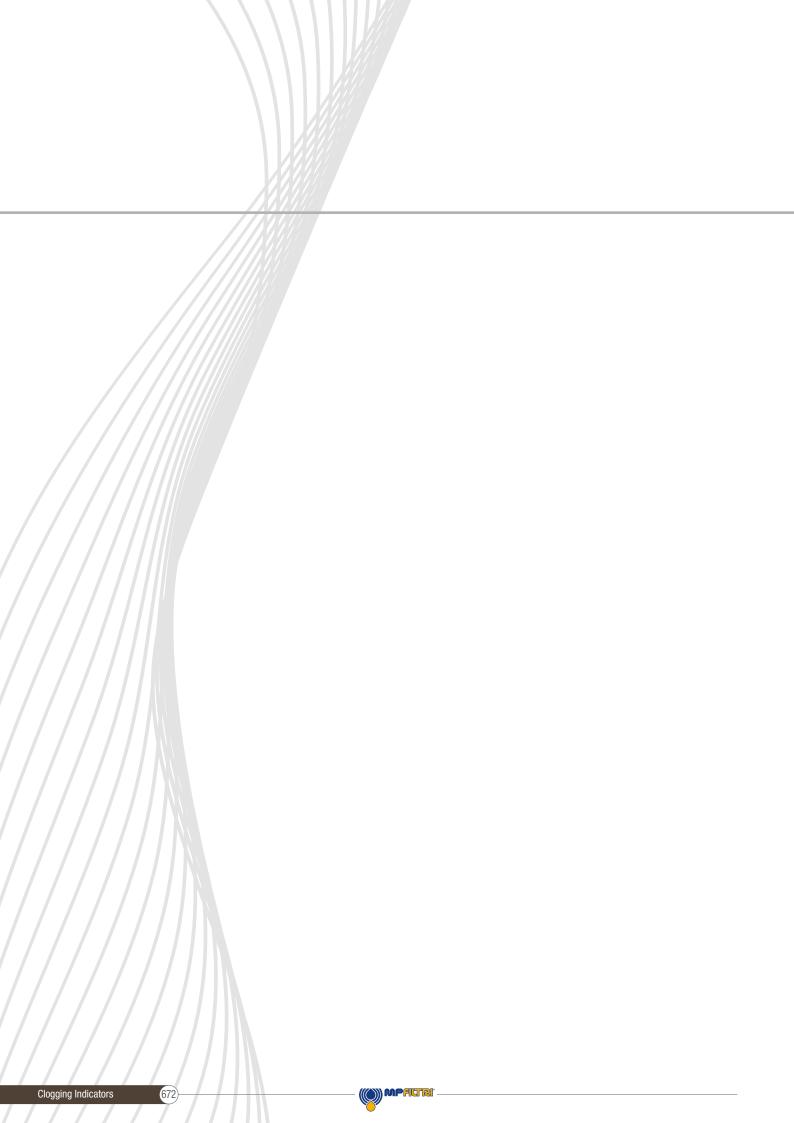
The indicator is set to alarm before the element becomes fully clogged.

MP Filtri can supply indicators of the following designs:

- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators

These type of devices can be provided with a visual, electrical or both signals. The electronic differential pressure clogging indicator is also available. It provides both analogical 4-20 mA output and digital warning (75% of clogging) and alarm (clogging) outputs.

In the following pages you can find a reference guide about the types of clogging indicators available in the different families of MP Filtri's Hydraulic Filtration range of products.


())) MPFILTRI

Clogging Indicators

DESIGNATION, ORDERING CODES & TECHNICAL DATA

INDEX

	Page
QUICK REFERENCE GUIDE	674
ORDERING CODES	
SUCTION FILTERS	679
RETURN FILTERS	680
RETURN / SUCTION FILTERS	682
SPIN-ON FILTERS	684
LOW & MEDIUM PRSSURE FILTERS	686
HIGH PRESSURE FILTERS	687
STAINLESS STEEL HIGH PRESSURE FILTERS	688
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	689
TECHNICAL DATA VACUUM INDICATORS	690
VACOOM INDICATORS	090
BAROMETRIC INDICATORS	692
DIFFERENTIAL INDICATORS	696
PLUGS	706

Ordering codes

Urdering codes											
Filter family	Filter ser	ies	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators						
SUCTION FILTERS	With bypass valve 0.3 bar	ELIXIR* SFEX060-080-110-160	VVB20P01 VVS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01						
SUC		SF2 250 - 350 SF2 500 - 501 - 503 - 504 - 505 SF2 510 - 535 - 540	VVA20P01 VVR20P01	VEA21xA50P01	VLA21xA51P01 VLA21xA52P01 VLA21xA53P01 VLA21xA71P01						
	With bypass 1.75 bar	ELIXIR* RFEX060-080-110-160	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01 BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01						
	Without bypass	ELIXIR* RFEX060-080-110-160	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01							
	With bypass 1.75 bar	MDH 250	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01 DVS12HP01	BEA15HA50P01 BEM15HA41P01 DES12HA10P01 DES12HA30P01 DES12HA80P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01						
RETURN FILTERS	With bypass 3 bar	MDH 250	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01 DVS25HP01	BEA20HA50P01 BEM20HA41P01 DES25HA10P01 DES25HA30P01 DES25HA80P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01						
μu	With bypass 1.75 bar	MPFX MPTX MPF MPT MPH	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01						
	With bypass 3 bar With bypass 2.5 bar	MPFX MPTX MPF MPT MPH	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01						
	With bypass 4.5 bar	MPLX	DVA20xP01	DEA20xA50P01 DEM20XX10P01 DEM20XX20P01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01						
	With bypass 2.4 bar	FRI	DVM20xP01	DEM20XX20P01 DEM20XX30P01 DEM20XX35P01	DLE20XASOP01 DLE20XF50P01 DTA20XF70P01						

674

Ordering codes

					Ordering codes
Filter family	, Filter :	series	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
		MRSX 116 - 165 - 166 Suction line	VVB20P01 VVS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
RETURN / SUCTION FILTERS	With bypass valve 2.5 bar	MRSX 116 - 165 - 166 Return line	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
RETURN	With bypass valve 2.5 bar	LMP 124 Multiport	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01 DVA20xP01 DVM20xP01	BEA20HA50P01 BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01 DEA20xA50P01 DEM20XX10P01 DEM20XX20P01 DEM20XX30P01 DEM20XX35P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01 DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01 DTA20xF70P01
	Suction line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350	WB20P01 WS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
SPIN-ON FILTERS	Return line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350 MST 050 - 070 - 100 - 150	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	In-line	MPS 051 - 071 - 101 - 151 MPS 301 - 351 MSH 050 - 070 - 100 - 150	DVA12xP01 DVM12xP01	DEA12xA50P01 DEM12xAxxP01	DLA12xA51P01 DLA12xA52P01 DLA12xA71P01 DLE12xA50P01 DLE12xF50P01 DLE20xF50P01 DLE20xF50P01 DTA12xA70P01 DTA12xF70P01 DTA20xA70P01 DTA20xF70P01

Ordering codes

Filter family	Filter s	series	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators			
		ELIXIR LFEX060-080-110-160	DVS25HP01	DES25HA10P01 DES25HA30P01 DES25HA80P01				
LOW & MEDIUM PRESSURE FILTERS	With bypass valve 3.5 bar	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA20xP01 DVM20xP01	DEA20xA50P01 DEM20xx10P01 DEM20xx20P01 DEM20xx30P01 DEM20xx35P01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01 DTA20xF70P01			
LOW & PRESSUR		ELIXIR* LFEX060-080-110-160	DVS40HP01	DES40HA10P01 DES40HA30P01 DES40HA80P01				
	Without bypass valve	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01 DTA50xF70P01			
SSURE	With bypass valve 6 bar	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMM 050 FMM 050 - 150 FHA 051 HM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01			
HIGH PRESSURE FILTERS	Without bypass valve	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMMX 050 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA70xP01 DVA95xP01 DVM70xP01 DVM95xP01	DEA70xA50P01 DEA95xA50P01 DEM70xx10P01 DEM70xx20P01 DEM70xx30P01 DEM70xx35P01 DEM95xx10P01 DEM95xx20P01 DEM95xx30P01 DEM95xx35P01	DLA70xA51P01 DLA70xA52P01 DLA70xA71P01 DLA95xA51P01 DLA95xA52P01 DLA95xA71P01 DLE70xA50P01 DLE70xF50P01 DLE95xA50P01 DLE95xF50P01 DTA70xF70P01 DTA95xF70P01			

Ordering codes

Filter family	, Filter seri	es	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators					
s steel re filters	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01	DEZ50xA50P01	DLZ50xA50P01 DLZ70xA50P01 DLZ95xA50P01					
	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01	DEZ70xA50P01 DEZ95xA50P01						
STAINLESS STEEL HIGH PRESSURE FILTERS	With bypass valve 6 bar	FZP 039 - 136 FZB 039 FZM 039 FZD 051	DVX50xP01 DVY50xP01	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01					
	Without bypass valve	FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEX70xA50P01 DEX95xA50P01	DLX70xA51P01 DLX70xA52P01 DLX95xA51P01 DLX95xA52P01					
	With bypass valve 6 bar	FMMX 050 FMM 050 -150	DVA50xP01 DVM50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01						
	Without bypass valve	FMMX 050 FMM 050 -150	DVA70xP01 DVA95xP01 DVM70xP01 DVM95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01 DEH95xA48P01 DEH95xA49P01 DEH95xA70P01						
ENTIALLY SSPHERE	With bypass valve 6 bar	FZP 039 - 136	DVX50xP01 DVY50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01						
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	Without bypass valve	FZP 039 - 136	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01 DEH95xA48P01 DEH95xA49P01 DEH95xA70P01						
	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01							
	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01							

Suitable indicator types

V ACUUM INDICATORS

Vacuum indicators are used on the Suction line to check the efficiency of the filter element. They measure the pressure downstream of the filter element.

Standard items are produced with R 1/4" EN 10226 connection.

Available products with R 1/8" EN 10226 to be fitted on MPS series.

Vacuum indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "V".

Example: V VVB20P01

Pressure indicators are used on the Return line to check the efficiency of the filter element.

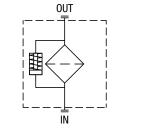
They measure the pressure upstream of the filter element.

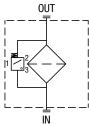
Standard items are produced with R 1/8" EN 10226 connection.

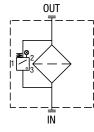
Barometric indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "B"

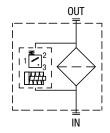
Example: B BVA14P01

D IFFERENTIAL INDICATORS

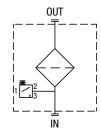

Differential indicators are used on the Pressure line to check the efficiency of the filter element.

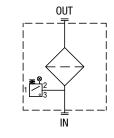

They measure the pressure upstream and downstream of the filter element (differential pressure).

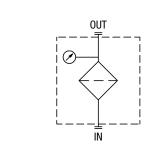

Standard items are produced with special connection G 1/2" size.

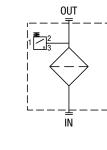

Also available in Stainless Steel models. Differential indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "D"

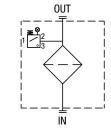
Example: D DVA20xP01

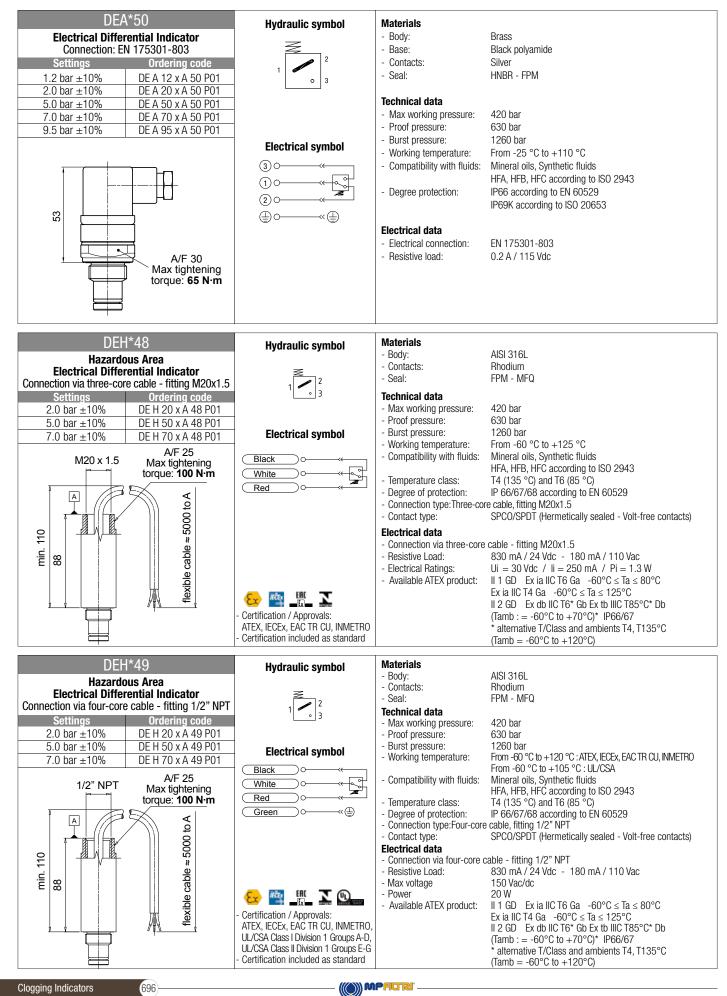


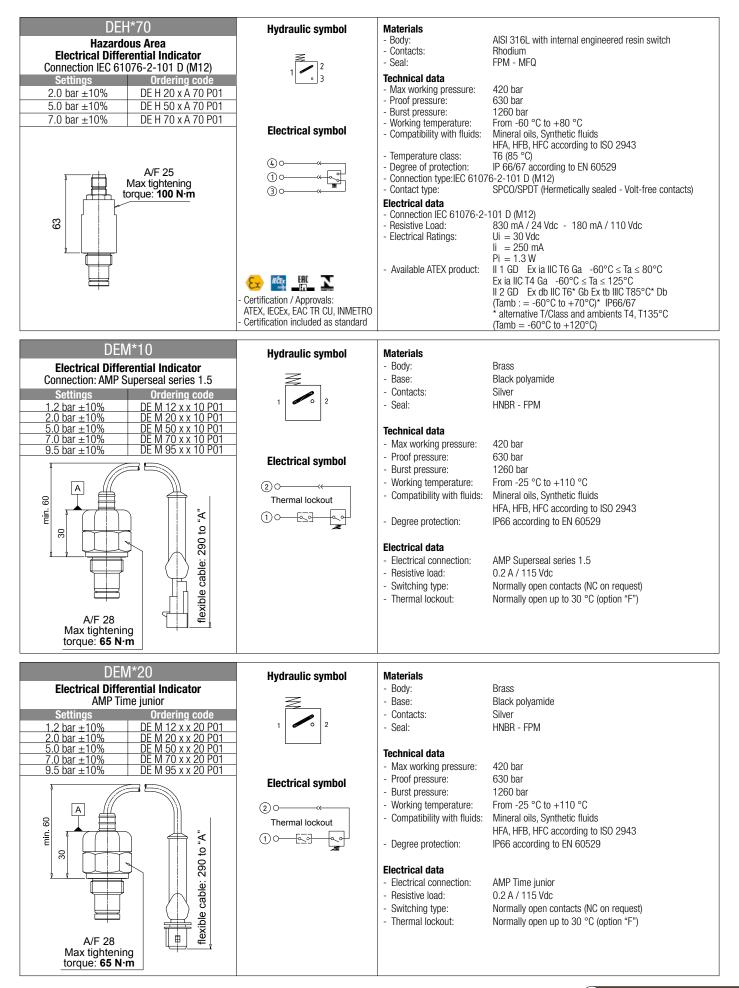








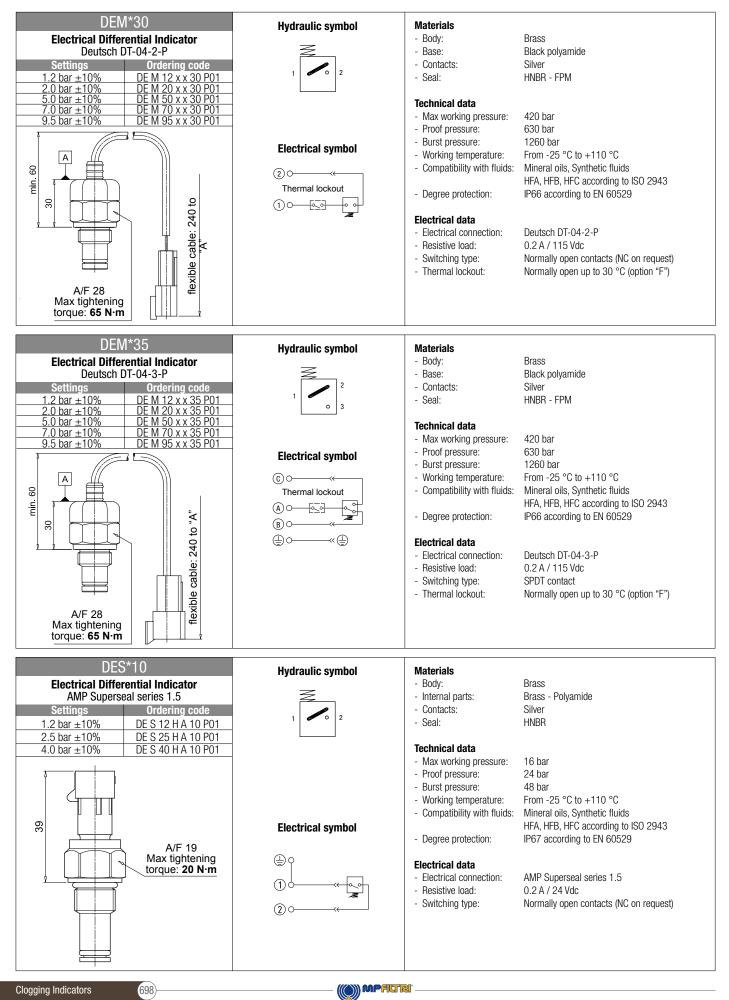


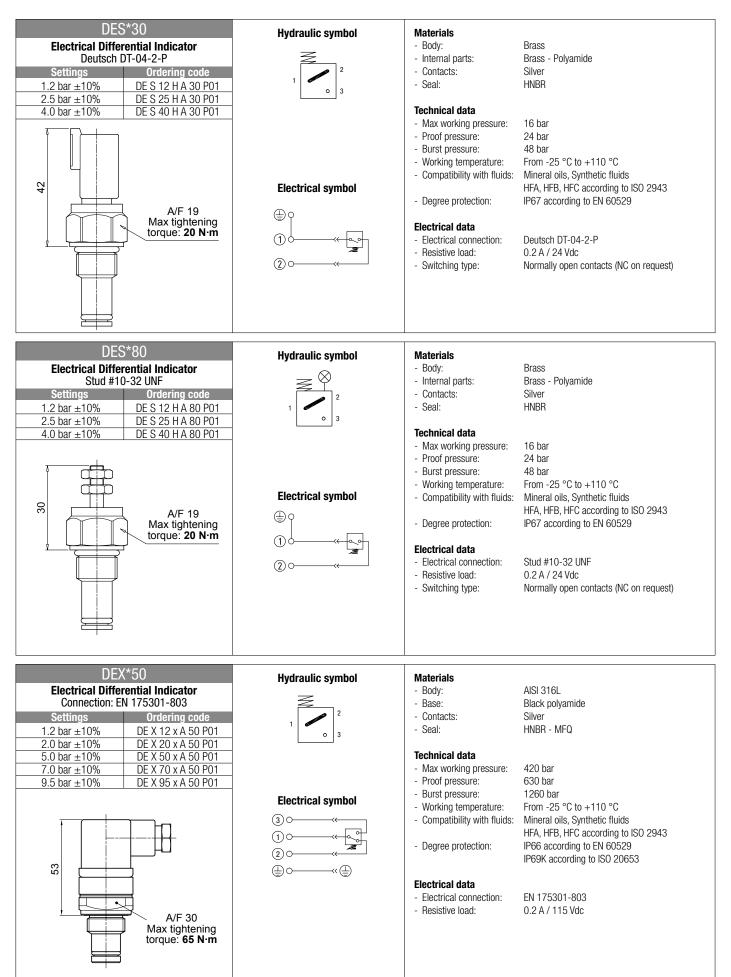


CLOGGING INDICATORS LOW & MEDIUM PRESS. FILTERS

Designation & Ordering code

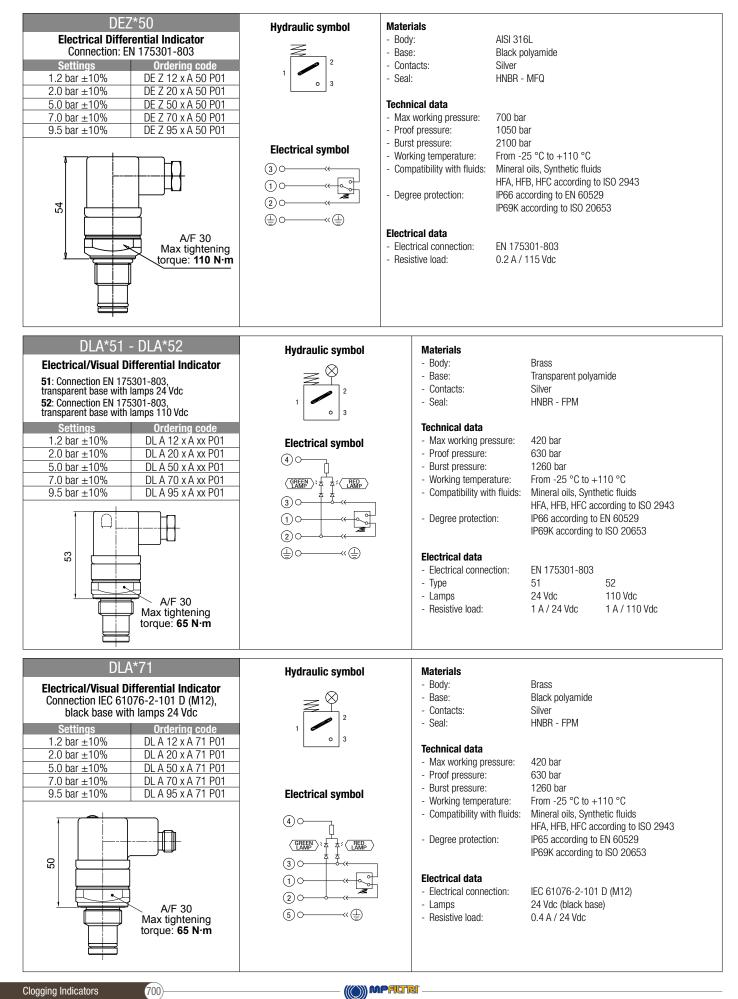
DIFFERENTIAL INDICATORS																
Sei	ies			Config	juration e	example 1:	DE		М		20	Н] F	ļ	50	P01
	Electrical differential indicator	_		Config	juration e	example 2:	DL		E	1	50	V	A		71	P01
	Electrical/Visual differential indicator	_				example 3:			Α		20	H	F		70	P01
DT	Electronic differential indicator	_				-] []		U	
DV	Visual differential indicator	_		Config	juration e	example 4:	DV		М		50	V	ا ۲		т	P01
Тур	e DE DL DT		D	V												
A	Standard type	Α	With automat	-												
m	With wired electrical connection •	- <u>^</u>	With manual			_										
E	For high power supply	- <u>m</u>	With automat			_										
S	Compact version •		Waradona	0010001		-										
Pre	ssure setting															
	1.2 bar															
	2.0 bar															
	5.0 bar															
	7.0 bar															
	9.5 bar															
6		_														
Sea H	HNBR															
W V	FPM	_														
-																
	ermostat			DEA	DEM	DLA [DLE D	T								
A	Without			•	•	•	• -									
F	With thermostat			-	•	-	• •	•								
Ele	ctrical connections			DEA	DEM	DES D	DLA DI	LE	DT							
10	Connection AMP Superseal series 1.5			-	•	•		-	-							
20	Connection AMP Timer Junior			-	•	-		-	-							
30	Connection Deutsch DT-04-2-P			-	•	•		-	-							
	Connection Deutsch DT-04-3-P			-	•	-		-	-							
50	Connection EN 175301-803			•	-	-	- •	Ð	-							
	Connection EN 175301-803, transparent base with			-	-	-	• -	-	-							
	Connection EN 175301-803, transparent base with	lamp	s 110 Vdc	-	-	-	• •	-	-			0	ption			
70	Connection IEC 61076-2-101 D (M12)			-	-	-		-	•			Ρ	01 N	1P Filtr	i star	Idard
71	Connection IEC 61076-2-101 D (M12), black base v	vith la	amps 24 Vdc	-	-	-	• .	-	-			P	xx C	ustom	ized	
80	Connection Stud #10-32 UNF			-	-	•	• .	-	-							
		D) IFFERENTI/	AL INDI	CATO	R PLUG	ì									
Sei	Series DEA DEM DES DL DT DVA DVM DVS Configuration example T2 H															
	Differential Indicator plug		• •	• -							Jungar]	
	Differential Indicator plug •			-	•											
	· · ·				_											
Sea				T2 T	4											
A H	NBR HNBR				-											
n V	FPM			•												
	1.1.1VI			-												

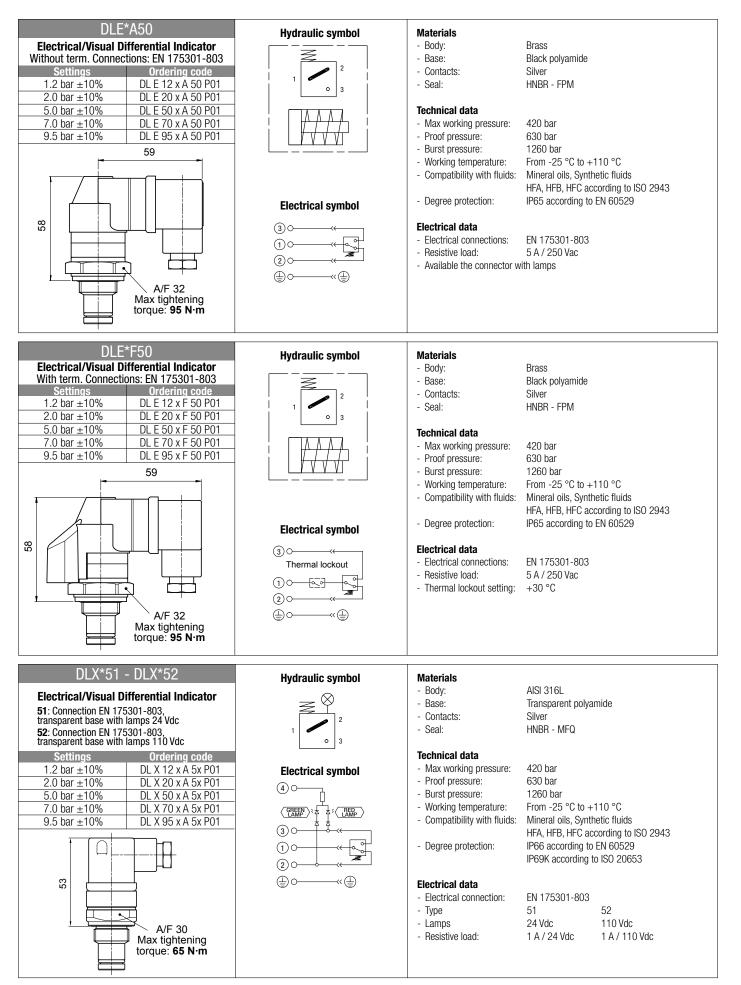



ERENTIAL INDICATORS

Dimensions

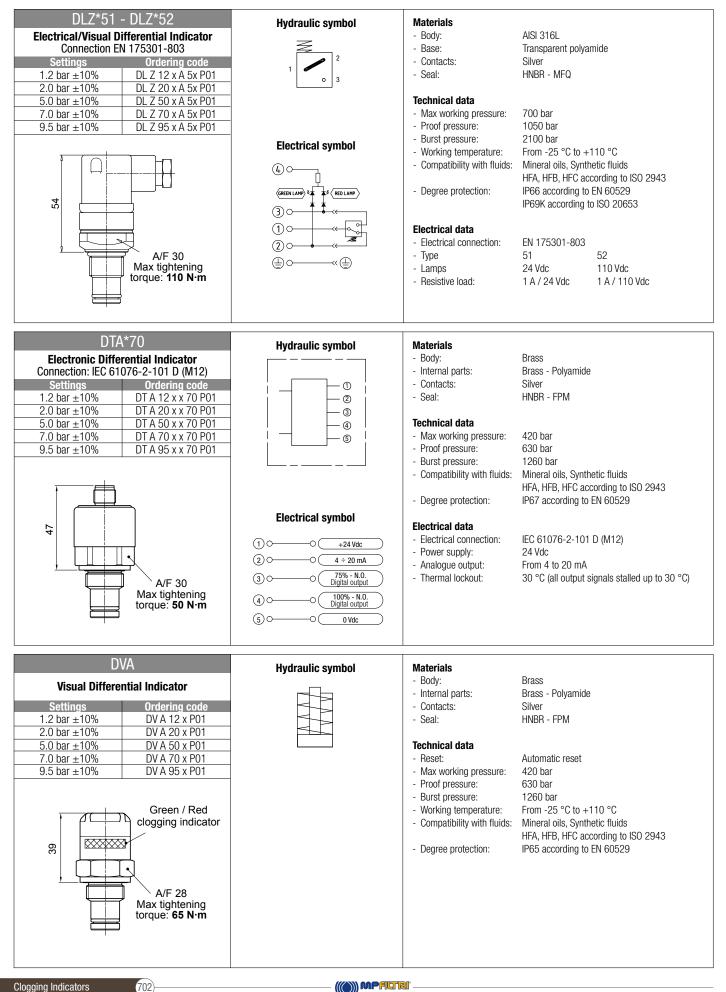
Clogging Indicators

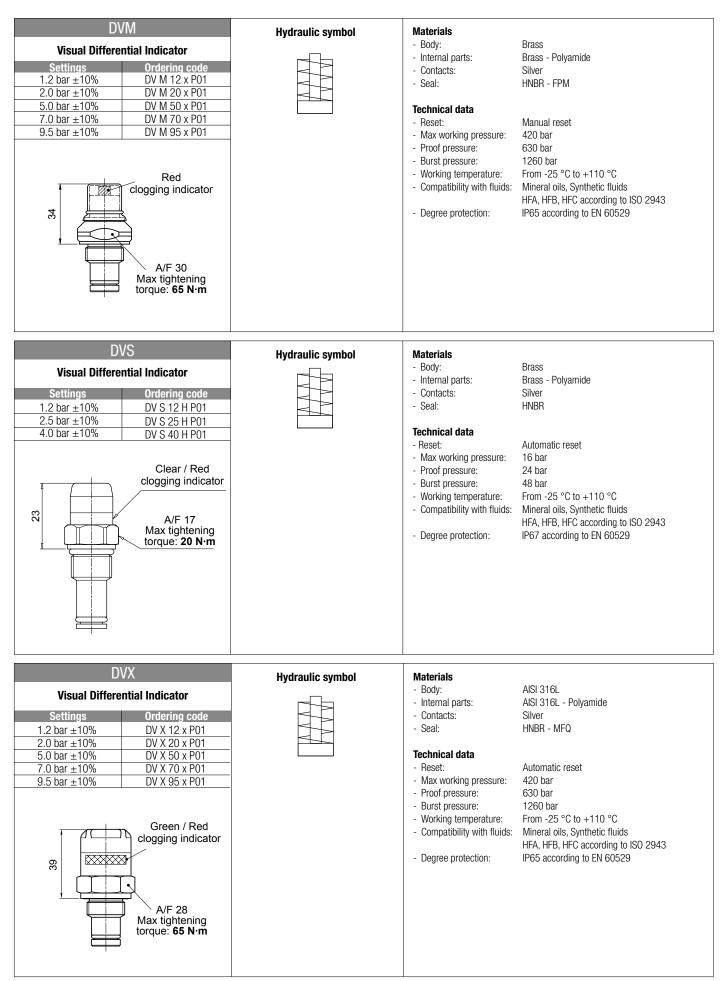

698



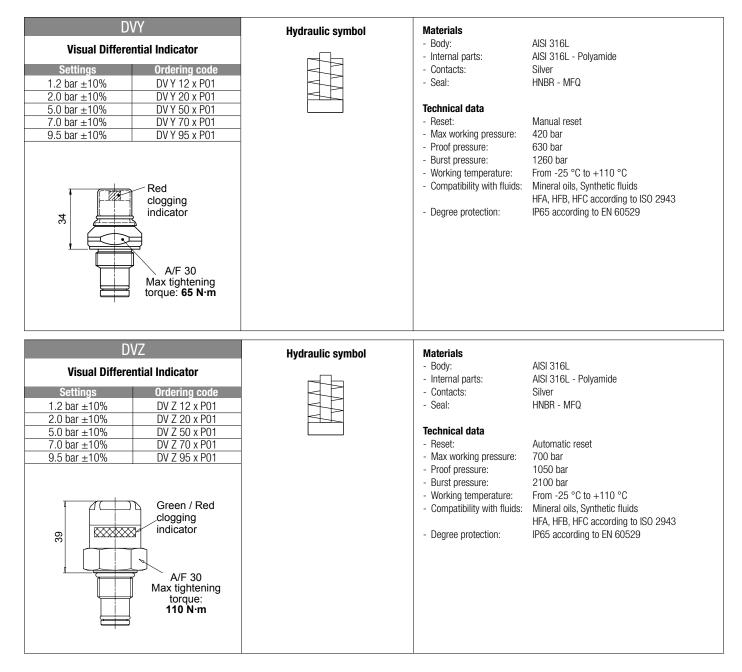
(()) MPFILTRI

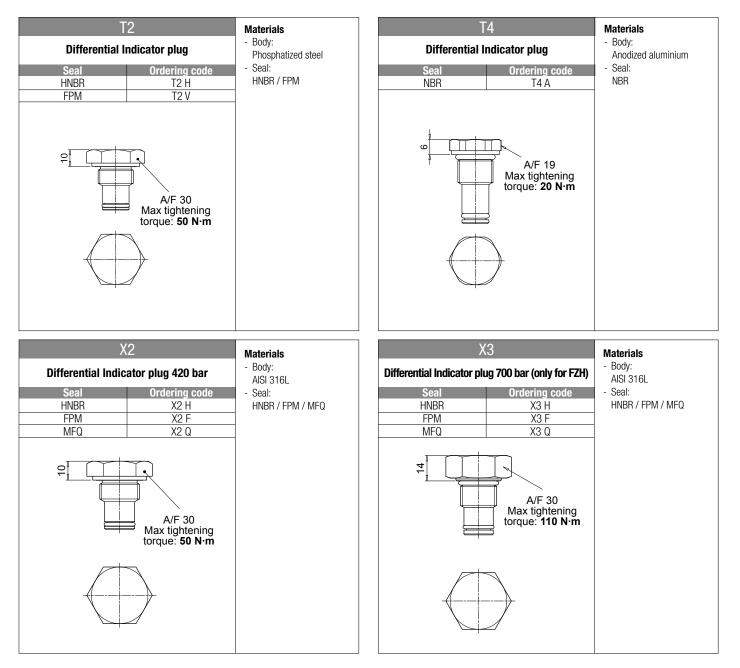
(699


Clogging Indicators



()) MPFILTRI




Clogging Indicators

DIFFERENTIAL INDICATORS

PLUGS

All data, details and words contained in this publication are provided for use by technically qualified personnel at their discretion, without warranty of any kind.
 MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and/or commercial reasons.
 For updated information please visit our website: *www.mpfiltri.com* The colors and the pictures of the products are purely indicative.
 Any reproduction, partial or total, of this document is strictly forbidden.
 All rights are strictly reserved

CANADA • CHINA • FRANCE • GERMANY • INDIA • SINGAPORE UNITED ARAB EMIRATES • UNITED KINGDOM • USA

PASSION TO PERFORM

in 🞯 D f

MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and/or commercia For updated information please visit our website: www.mpfiltri.com. The colors and the pictures of the products are purely indicative. Any reproduction, partial or total, of this document is strictly forbidden. All rights are strictly reserved